留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合椭球腔太阳能聚光均匀线光源设计

芦宇 杨逸 张祥祥 孔维敬

芦宇, 杨逸, 张祥祥, 孔维敬. 复合椭球腔太阳能聚光均匀线光源设计[J]. 中国光学(中英文), 2023, 16(1): 144-150. doi: 10.37188/CO.2022-0138
引用本文: 芦宇, 杨逸, 张祥祥, 孔维敬. 复合椭球腔太阳能聚光均匀线光源设计[J]. 中国光学(中英文), 2023, 16(1): 144-150. doi: 10.37188/CO.2022-0138
LU Yu, YANG Yi, ZHANG Xiang-xiang, KONG Wei-jing. Design of solar concentrated uniform linear light source of composite ellipsoid cavity[J]. Chinese Optics, 2023, 16(1): 144-150. doi: 10.37188/CO.2022-0138
Citation: LU Yu, YANG Yi, ZHANG Xiang-xiang, KONG Wei-jing. Design of solar concentrated uniform linear light source of composite ellipsoid cavity[J]. Chinese Optics, 2023, 16(1): 144-150. doi: 10.37188/CO.2022-0138

复合椭球腔太阳能聚光均匀线光源设计

doi: 10.37188/CO.2022-0138
基金项目: 装备预研重点实验室基金(No. 2021JCJQLB055005),天津市科技计划项目(No. 20YDTPJC02010),国家级大学生创新创业训练项目(No. 202110066018)
详细信息
    作者简介:

    芦 宇(1982—),男,博士,讲师,主要从事机非成像光学系统设计、激光器设计、激光加工技术。E-mail: 2013040009@tute.edu.cn

    杨 逸(2000—),男,主要研究方向为光学系统设计。E-mail:1529689031@qq.com

  • 中图分类号: TN242;TN245

Design of solar concentrated uniform linear light source of composite ellipsoid cavity

Funds: Pre-Research Key Laboratory Foundation of the General Armament Department (No. 2021JCJQLB055005), Natural Science Foundation of Tianjin City (No. 20YDTPJC02010), National College Students' Innovation and Entrepreneurship Training Program (No. 202110066018)
More Information
  • 摘要:

    为了实现太阳光直接泵浦板条高功率激光器,对均匀线形高功率密度泵浦源进行研究。本文提出由一级聚光系统与7个共焦点椭球叠加形成二级聚光系统(复合椭球腔),组合实现高功率密度均匀线光源的设计方法。每个椭球可对圆形第一焦斑进行等辐射通量分割,镜像成像特点使得峰值功率密度未明显下降,分解后镜像光斑在第二焦点处形成均匀线光源。通过坐标变化给出等辐射通量数学模型,利用退火算法求解出每个椭球旋转平移参量。由半径为30 mm,焦距为70 mm菲涅尔透镜和a=3.4 mm,c=3.15 mm单椭球腔组成一级系统,附带二级复合椭球腔聚光系统,可实现有效长度为12 mm,峰值功率密度为1.09×106 W/m2,均匀度为95.46%线光源。对比每个椭球参量对均匀度贡献,中间椭球旋转参量θ为1.4°,均匀度改善明显,边缘椭球参量Δ改变对线光源有效长度影响显著,其最佳值为0.53 mm。

     

  • 图 1  一级聚光系统示意图

    Figure 1.  Schematic diagram of the primary concentrator system

    图 2  三复合椭球形成的线光源示意图

    Figure 2.  Schematic diagram of linear light source through three composite ellipsoids

    图 3  整形前后配光曲线图

    Figure 3.  Light distribution before and after focusing and shaping

    图 4  均匀度及有效半高宽随Δ改变情况

    Figure 4.  Uniform and effective FWHM length as function of Δ

    图 5  均匀度及有效半高宽随θ变化关系

    Figure 5.  Uniform and effective FWHM length as function of θ

    图 6  均匀度及有效半高宽随α变化关系

    Figure 6.  Uniform and effective FWHM length as function of α

    图 7  太阳光聚光系统光迹追踪模型

    Figure 7.  Ray tracing model of solar concentrator

    图 8  优化后均匀线光源辐射照度图

    Figure 8.  Illumination distribution of uniform line light after optimization

    表  1  复合椭球腔αθΔ计算结果

    Table  1.   Results of α, θ, Δ of composite ellipsoid cavities

    L3L2L1MR1R2R3
    θ1.241.271.251.201.251.271.24
    α−7.50−5.42−2.5102.515.427.50
    Δ /mm0.6210.3000.07500.0750.3000.621
    下载: 导出CSV

    表  2  优化后复合椭球腔αθΔ

    Table  2.   Optimized α, θ, Δ of composite ellipsoid cavities

    L3L2L1MR1R2R3
    θ1.451.401.281.451.281.401.45
    α−7.50−5.40−2.3002.305.407.50
    Δ /mm0.530.300.0800.080.300.53
    下载: 导出CSV
  • [1] HAN X Y, SUN Y, HUANG J, et al. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter[J]. International Journal of Energy Research, 2020, 44(6): 4837-4850. doi: 10.1002/er.5277
    [2] ZHOU ZH G, WANG Z, BERMEL P. Radiative cooling for low-band gap photovoltaics under concentrated sunlight[J]. Optics Express, 2019, 27(8): A404-A418. doi: 10.1364/OE.27.00A404
    [3] KOST C, MAYER J N, THOMSON J, et al. . Levelized cost of electricity: PV and CPV in comparison to other technologies[C]. Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, European Commission, 2014: 4086.
    [4] NOZIK A J, CONIBEER G, BEARD M C. Advanced Concepts in Photovoltaics[M]. Cambridge: Royal Society of Chemistry Press, 2014.
    [5] LI M, XU C M, JI X, et al.. A new study on the end loss effect for parabolic trough solar collectors[J]. Energy, 2015; 82: 382.
    [6] 孟宪龙, 刘备, 段辰星, 等. 一种新型槽式太阳能CPV/T聚光器的光学传输特性[J]. 光学学报,2021,41(15):1522002. doi: 10.3788/AOS202141.1522002

    MENG X L, LIU B, DUAN CH X, et al. Optical transmission characteristic of novel trough type CPV/T concentrator[J]. Acta Optica Sinica, 2021, 41(15): 1522002. (in Chinese) doi: 10.3788/AOS202141.1522002
    [7] 尹勇, 杨洪海, 苏亚欣, 等. 聚光型太阳能光伏光热系统研究进展[J]. 热能动力工程,2022,37(1):1-13.

    YIN Y, YANG H H, SU Y X, et al. Research progress of solar concentrating photovoltaic-thermal system[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(1): 1-13. (in Chinese)
    [8] TIBÚRCIO B D, LIANG D W, ALMEIDA J, et al. Improving solar-pumped laser efficiency by a ring-array concentrator[J]. Journal of Photonics for Energy, 2018, 8(1): 018002.
    [9] LIANG D W, VISTAS C R, TIBÚRCIO B D, et al. Solar-pumped Cr: Nd: YAG ceramic laser with 6.7% slope efficiency[J]. Solar Energy Materials and Solar Cells, 2018, 185: 75-79. doi: 10.1016/j.solmat.2018.05.020
    [10] LIANG D W, VISTAS C R, ALMEIDA J, et al. Side-pumped continuous-wave Nd: YAG solar laser with 5.4% slope efficiency[J]. Solar Energy Materials and Solar Cells, 2019, 192: 147-153. doi: 10.1016/j.solmat.2018.12.029
    [11] YABE T, MOHAMED M S, UCHIDA S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J]. Journal of Applied Physics, 2007, 101(12): 123106. doi: 10.1063/1.2743730
    [12] SAIKI T, UCHIDA S, MOTOKOSHI S, et al. . Development of solar-pumped lasers for space solar power station[C]. Proceedings of the 56th International Astronautical Congress, International Astronautical Federation, 2005: 4250.
    [13] YABE T, OHKUBO T, UCHIDA T, et al. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle[J]. Journal of Physics:Conference Series, 2008, 112: 042072. doi: 10.1088/1742-6596/112/4/042072
    [14] 胡金萍. 聚光光斑的均匀性对聚光光伏系统性能影响的理论研究[D]. 南京: 南京理工大学, 2018.

    HU J P. Theoretical study on how the non-uniformity of the sunlight spot influences the performance of the concentrating photovoltaic system[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
    [15] 马军, 王成龙, 夏养君. 线性菲涅尔式太阳能聚光系统二次聚光器研究进展[J]. 中国科学:技术科学,2020,50(8):997-1008. doi: 10.1360/SST-2020-0190

    MA J, WANG CH L, XIA Y J. Research progress on secondary concentrator for linear Fresnel reflector[J]. Cientia Sinica Technologica, 2020, 50(8): 997-1008. (in Chinese) doi: 10.1360/SST-2020-0190
    [16] 黄媛. 复合抛物面聚光器的性能分析和应用研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2019.

    HUANG Y. Performance analysis on compound parabolic concentrator and its applications[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2019. (in Chinese)
    [17] 吕家祺, 张宁, 尹鹏, 等. 太阳能光伏聚光器光学设计类型研究进展[J]. 激光与光电子学进展,2019,56(23):230002.

    LV J Q, ZHANG N, YIN P, et al. Research progress on optically designed solar photovoltaic concentrators[J]. Laser &Optoelectronics Progress, 2019, 56(23): 230002. (in Chinese)
    [18] 赵会富, 朱浩宇, 童宏伟, 等. 能量均匀分布的菲涅耳聚光系统的设计[J]. 激光杂志,2018,39(12):10-14. doi: 10.14016/j.cnki.jgzz.2018.12.010

    ZHAO H F, ZHU H Y, TONG H W, et al. Design of energy uniform distribution Fresnel concentration system[J]. Laser Journal, 2018, 39(12): 10-14. (in Chinese) doi: 10.14016/j.cnki.jgzz.2018.12.010
    [19] 杨淑利, 刘志全, 濮海玲. 空间聚光电池阵用拱形菲涅耳透镜的设计与分析[J]. 宇航学报,2014,35(1):106-114.

    YANG SH L, LIU ZH Q, PU H L. Design and analysis of arched Fresnel-lens for spacial concentrating solar array[J]. Journal of Astronautics, 2014, 35(1): 106-114. (in Chinese)
    [20] CHEN ZH ZH, XU Y T, GUO Y D, et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier[J]. Applied Optics, 2015, 54(16): 5011-5015. doi: 10.1364/AO.54.005011
    [21] 闫钰锋, 于洋, 白素平, 等. 板条激光器光束质量控制技术研究进展[J]. 中国光学,2019,12(4):767-782. doi: 10.3788/co.20191204.0767

    YAN Y F, YU Y, BAI S P, et al. Progress on beam quality control technology of slab lasers[J]. Chinese Optics, 2019, 12(4): 767-782. (in Chinese) doi: 10.3788/co.20191204.0767
    [22] 燕宇翔, 芦宇, 张祥祥. 大功率LED均匀线光源光学系统设计[J]. 照明工程学报,2020,31(1):77-82. doi: 10.3969/j.issn.1004-440X.2020.01.014

    YAN Y X, LU Y, ZHANG X X. Design of optical system for high power LED uniform line light source[J]. China Illuminating Engineering Journal, 2020, 31(1): 77-82. (in Chinese) doi: 10.3969/j.issn.1004-440X.2020.01.014
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  186
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-07-13
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!