-
摘要:
基于单光子探测的距离选通成像系统中,需发射短脉冲激光并进行发射器和接收器之间的同步控制,使探测器工作在光子计数模式并在时间上进行积分,以完成成像操作。为了获得满足系统要求的短脉冲激光,同时减小系统体积、降低系统成本,本文提出将基于射频双极晶体管和基于阶跃恢复二极管SRD(结合短路传输线)两种产生窄脉冲电路应用于单光子距离选通成像系统。介绍了二者的原理与设计方法,进行了仿真验证、实物制作及测试,对脉冲发生器的特点、影响脉宽幅值的因素进行了分析。实物测试结果表明,基于晶体管方式可以产生上升时间为903.5 ps、下降时间为946.1 ps、脉冲宽度为824 ps、幅度为2.46 V的窄脉冲。基于SRD方式可以产生上升时间为456.8 ps、下降时间为458.3 ps、脉冲宽度为1.5 ns、幅度为2.38 V的窄脉冲,二者重复频率皆可达到50 MHz。利用这两种设计方法的任何一种配合外部电流驱动激光二极管都能够获得性能优良的短脉冲激光输出。
-
关键词:
- 距离选通成像 /
- 双极性晶体管 /
- 阶跃恢复二极管(SRD) /
- 短脉冲激光
Abstract:In a distance-selected imaging system based on single-photon detection, a short-pulse laser is emitted and synchronization control between the transmitter and receiver is performed, and the detector operates in photon counting mode and integrates in time to complete the imaging. In order to obtain a short pulse laser that meets the system requirements while reducing the system’s size and cost, we propose to apply two types of narrow pulse generation circuits based on RF bipolar transistor and Step Recovery Diode (SRD) to single photon distance selective imaging systems. We introduce the principle and design method of both types and verify the system through simulation, physical fabrication and testing. The characteristics of the pulse generator and factors affecting its pulse width and amplitude are analyzed. The physical test results show that the transistor-based method can generate a narrow pulse with a rise time of 903.5 ps, a fall time of 946.1 ps, a pulse width of 824 ps, and an amplitude of 2.46 V; the SRD-based method can generate a narrow pulse with a rise time of 456.8 ps, a fall time of 458.3 ps, a pulse width of 1.5 ns, and an amplitude of 2.38 V; and the repetition frequency of both can reach 50 MHz. Both design methods can be used with external current-driven laser diodes to achieve excellent short pulse laser output.
-
Key words:
- range-gated imaging /
- bipolar transistor /
- step recovery diode /
- short pulse laser
-
表 1 其他情况下基于晶体管电路的测试数据
Table 1. Test data of transistor-based circuits in other cases
激励源频率/MHz 外加电源/V 脉冲宽度 脉冲幅度/V 10 5 1.186 ns 4.24 20 5 1.041 ns 3.68 50 5 824.0 ps 2.46 10 10 1.869 ns 8.16 20 10 1.508 ns 7.32 50 10 1.011 ns 6.04 表 2 其他情况下基于阶跃恢复二极管电路的测试数据
Table 2. Test data of step recovery diode-based circuits in other cases
激励源频率 传输线长度 脉冲脉宽 脉冲幅度 10 MHz 10 cm 1.493 ns 2.86 V 20 MHz 10 cm 1.498 ns 2.606 V 50 MHz 10 cm 1.525 ns 2.38 V 10 MHz 20 cm 2.884 ns 3.00 V 20 MHz 20 cm 2.923 ns 2.82 V 50 MHz 20 cm 2.878 ns 2.30 V -
[1] STEINVALL O K, OLSSON H, BOLANDER G, et al. Gated viewing for target detection and target recognition[J]. Proceedings of SPIE, 1999, 3707: 432-448. doi: 10.1117/12.351364 [2] INTEVAC. LIVAR Model 4000 Preliminary Specifications[M]. Santa Clara: INTEVAC, 2006. [3] OBZERV. 距离选通夜视技术[EB/OL]. http://www.obzerv.com/products/land-systems/argc-2400/OBZERV. Distance selective pass night vision technology [EB/OL]. http://www.obzerv.com/products/land-systems/argc-2400/ (in Chinese). [4] 朱建春, 李欣, 朱威. 流动卫星激光测距系统的距离选通实现方法[J]. 红外与激光工程,2022,51(12):145-155.ZHU J CH, LI X, ZHU W. Implementation method of range-gating for mobile satellite laser ranging system[J]. Infrared and Laser Engineering, 2022, 51(12): 145-155. (in Chinese) [5] 雷帆朴. 基于位敏阳极的单光子成像关键技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.LEI F P. Research on the key technology of single photon imaging based on position sensitive anode[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2019. (in Chinese) [6] HOLZMAN J F, VERMEULEN F E, ELEZZABI A Y. Recombination-independent photogeneration of ultrashort electrical pulses[J]. Applied Physics Letters, 2000, 76(2): 134-136. doi: 10.1063/1.125679 [7] OH S, WENTZLOFF D D. A step recovery diode based UWB transmitter for low-cost impulse generation[C]. Proceedings of 2011 IEEE International Conference on Ultra-Wideband, IEEE, 2011. [8] 陈彦超, 赵柏秦, 李伟. 用于纳秒级窄脉冲工作的大功率半导体激光器模块[J]. 光学 精密工程,2009,17(4):695-700.CHEN Y CH, ZHAO B Q, LI W. High peak power semiconductor laser module for producing nanosecond pulse[J]. Optics and Precision Engineering, 2009, 17(4): 695-700. (in Chinese) [9] 王佳敏, 季艳慧, 梁志勇, 等. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学,2022,15(2):242-250. doi: 10.37188/CO.2021-0160WANG J M, JI Y H, LIANG ZH Y, et al. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. (in Chinese) doi: 10.37188/CO.2021-0160 [10] UHRING W, ZINT C V, BARTRINGER J. A low-cost high-repetition-rate picosecond laser diode pulse generator[C]. Proceedings of the SPIE, 2004, 5452: 583-590. [11] 刘军. 极窄脉冲合成与超快沿产生电路设计[D]. 成都: 电子科技大学, 2019.LIU J. The circuit design of the ultral-narrow pulse synthesis and ultra-fast edge generation[D]. Chengdu: University of Electronic Science and Technology, 2019. (in Chinese) [12] ZHU A F, SHENG F, ZHANG A X. An implementation of step recovery diode-based UWB pulse generator[C]. Proceedings of 2010 IEEE International Conference on Ultra-Wideband, IEEE, 2010: 1-4. [13] BINH P H, TRONG V D, RENUCCI P, et al. 100 ps Optical pulse generator using laser diodes for visible light communication applications[J]. Microwave and Optical Technology Letters, 2014, 56(1): 184-187. doi: 10.1002/mop.28074 [14] LEE J S, NGUYEN C. Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 208-210. doi: 10.1109/7260.923030 [15] LEE J S, NGUYEN C. Uniplanar picosecond pulse generator using step-recovery diode[J]. Electronics Letters, 2001, 37(8): 504-506. doi: 10.1049/el:20010350 [16] HAN J, NGUYEN C. A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing[J]. IEEE Microwave and Wireless Components Letters, 2002, 12(6): 206-208. doi: 10.1109/LMWC.2002.1009996 [17] PROTIVA P, MRKVICA J, MACHÁČ J. A compact step recovery diode subnanosecond pulse generator[J]. Microwave and Optical Technology Letters, 2010, 52(2): 438-440. doi: 10.1002/mop.24945 [18] 李曦. 超宽带脉冲发生器的设计[D]. 成都: 成都理工大学, 2018.LI X. Design of the UWB narrow pulse generator[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese) [19] 陈彦超, 冯永革, 张献兵. 用于半导体激光器的大电流纳秒级窄脉冲驱动电路[J]. 光学 精密工程,2014,22(11):3145-3151. doi: 10.3788/OPE.20142211.3145CHEN Y CH, FENG Y G, ZHANG X B. Large current nanosecond pulse generating circuit for driving semiconductor laser[J]. Optics and Precision Engineering, 2014, 22(11): 3145-3151. (in Chinese) doi: 10.3788/OPE.20142211.3145 [20] 李萌, 黄忠华, 沈磊. 阶跃恢复二极管参数对窄脉冲波形的影响研究[J]. 兵工学报,2017,38(8):1490-1497. doi: 10.3969/j.issn.1000-1093.2017.08.005LI M, HUANG ZH H, SHEN L. Effects of step recovery diode parameters on narrow pulse waveform[J]. Acta Armamentarii, 2017, 38(8): 1490-1497. (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.08.005 [21] 吴福培, 谢晓扬, 李昇平. 一种散热型发光二极管阵列结构光源设计方法[J]. 中国光学,2021,14(3):670-684. doi: 10.37188/CO.2020-0211WU F P, XIE X Y, LI SH P. A thermal dissipation design method for LED array structure illumination[J]. Chinese Journal of Optics, 2021, 14(3): 670-684. (in Chinese) doi: 10.37188/CO.2020-0211