留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films

JI Yu-jin CHU Xue-ying DONG Xu LI Jin-hua

吉于今, 楚学影, 董旭, 李金华. 紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射[J]. 中国光学(中英文), 2023, 16(1): 202-213. doi: 10.37188/CO.2022-0152
引用本文: 吉于今, 楚学影, 董旭, 李金华. 紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射[J]. 中国光学(中英文), 2023, 16(1): 202-213. doi: 10.37188/CO.2022-0152
JI Yu-jin, CHU Xue-ying, DONG Xu, LI Jin-hua. Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. doi: 10.37188/CO.2022-0152
Citation: JI Yu-jin, CHU Xue-ying, DONG Xu, LI Jin-hua. Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. doi: 10.37188/CO.2022-0152

紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射

详细信息
  • 中图分类号: O469

Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films

doi: 10.37188/CO.2022-0152
Funds: Department of Science and Technology of Jilin Province (No. 20200201266JC)
More Information
    Author Bio:

    Ji Yu-jin (1994—), female, born in Yuncheng, Shanxi Province. In 2018, she received her bachelor's degree from Taiyuan Normal University in 2018. Currently, she is mainly engaged in the research of nanomaterial preparation and optical properties. E-mail: yj_ji1113@163.com

    Chu Xue-ying (1982—), female, born in Changchun, Jilin Province, Ph.D., associate Professor. In 2011, she obtained her Ph.D. degree from Northeast Normal University. Currently, she is mainly engaged in the research on the preparation of semiconductor nanomaterials and the application of photoelectric properties. E-mail: xueying_chu@cust.edu.cn

    Corresponding author: xueying_chu@cust.edu.cn
  • 摘要:

    为了利用可见光学元件实现对紫外偏振光的高性能探测,制备了CsPbBr3纳米晶/金属线栅复合薄膜,并通过向其表面沉积Al2O3钝化层提高了薄膜荧光稳定性,获得了紫外激发下偏振敏感的钙钛矿纳米晶薄膜绿色荧光。测试结果表明,以高温热注入法获得的CsPbBr3纳米晶为立方晶系结构,形貌呈方形,尺寸约39 nm。以紫外光激发纳米晶胶体溶液可在530 nm处观测到明显的绿色荧光。以自组装方法获得的CsPbBr3纳米晶/金属线栅复合薄膜荧光发光强度随紫外激发光的偏振方向呈周期性变化,其发光偏振度约为0.54。以原子层沉积技术向此复合薄膜表面沉积Al2O3层可明显提高其荧光强度,钝化后复合薄膜的发光偏振度仍可达0.36。以上结果表明,表面钝化和引入金属线栅方法可分别优化钙钛矿纳米晶薄膜的荧光稳定性和荧光偏振度,所获得的紫外偏振敏感的CsPbBr3纳米晶复合薄膜在紫外偏振探测以及液晶显示等领域具有重要的应用价值。

     

  • 图 1  CsPbBr3纳米晶薄膜的XRD图谱和CsPbBr3的标准衍射图谱

    Figure 1.  XRD spectrum (top) of CsPbBr3 NCs film and standard diffraction pattern (bottom) of CsPbBr3

    图 2  (a)CsPbBr3纳米晶TEM图像;(b)纳米晶尺寸分布;(c)CsPbBr3纳米晶薄膜SEM图像;(d)Al2O3钝化后CsPbBr3纳米晶薄膜SEM图像

    Figure 2.  (a) TEM images of CsPbBr3 NCs; (b) the size distribution of the NCs; (c) SEM images of CsPbBr3 NCs; (d) CsPbBr3 NCs films after Al2O3 passivation

    图 3  (a) CsPbBr3纳米晶的荧光光谱(实线)与紫外-可见吸收光谱图(虚线); CsPbBr3纳米晶在(b)自然光和(c)紫外光下的实物照片

    Figure 3.  (a) UV-Vis absorption spectrum (dotted line) and fluorescence (FL) emission spectrum (solid line) of the CsPbBr3 NCs; optical photographs of CsPbBr3 NCs under (b) natural light and (c) UV light

    图 4  (a) Al2O3钝化前后纳米晶/金属线栅复合薄膜的荧光光谱图;(b) Al2O3钝化前后CsPbBr3纳米晶/金属线栅复合薄膜荧光强度随紫外光照时间变化关系曲线;(c) Al2O3钝化前后CsPbBr3纳米晶薄膜荧光强度随紫外光照时间变化关系曲线(每个图中虚线对应样品经Al2O3钝化后的结果;实线对应样品未沉积Al2O3的结果)

    Figure 4.  (a) FL spectra of nanocrystal/metal wire-grid composite films before and after Al2O3 passivation; (b) plots of FL intensity of the CsPbBr3 NCs/metal wire-grid composited film versus time of irradiation by UV light before and after Al2O3 passivation; (c) plots of FL intensity of the CsPbBr3 NCs film versus time of irradiation by UV light before and after Al2O3 passivation (Dotted lines are for samples after Al2O3 passivation, and solid lines are for samples before the Al2O3 passivation)

    图 5  (a) 偏振荧光光谱测试原理图;(b) 不同激发光偏振角度对应的CsPbBr3纳米晶/金属线栅复合薄膜偏振荧光光谱图;Al2O3钝化前后CsPbBr3纳米晶/金属线栅复合薄膜荧光强度随激发光角度变化曲线:(c)钝化前,(d)钝化后

    Figure 5.  (a) Schematic diagram of polarization fluorescence spectroscopy test; (b) FL spectra of CsPbBr3 NCs/metal wire-grid composited films corresponding to different polarization angles of the exciting light; plots of FL intensities of the CsPbBr3 NCs/metal wire-grid composited film before (c) and after (d) Al2O3 passivation versus the polarization angles of the exciting light

  • [1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779
    [2] QU J Y, WANG Y P, SUN J J, et al. Analysis of photoelectric characteristics of a light-damaged schottky perovskite detector[J]. Chinese Optics, 2022, 15(4): 668-674. (in Chinese) doi: 10.37188/CO.2021-0196
    [3] ZHANG Y N, SIEGLER T D, THOMAS C J, et al. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(13): 5410-5423. doi: 10.1021/acs.chemmater.0c01735
    [4] CHIBA T, HOSHI K, PU Y J, et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment[J]. ACS Applied Materials &Interfaces, 2017, 9(21): 18054-18060.
    [5] WANG Y, LI X M, SONG J ZH, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44): 7101-7108. doi: 10.1002/adma.201503573
    [6] SURENDRAN A, YU X CH, BEGUM R, et al. All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: from ultrahigh gain to Photostability[J]. ACS Applied Materials &Interfaces, 2019, 11(30): 27064-27072.
    [7] ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi: 10.3788/co.20201301.0062
    [8] WANG L, DONG Y, GAO S, et al. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. (in Chinese) doi: 10.3788/co.20191205.0993
    [9] WANG B, LIU L J, LIU B, et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots[J]. Physica B:Condensed Matter, 2020, 599: 412488. doi: 10.1016/j.physb.2020.412488
    [10] WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350. doi: 10.1039/C8CS00740C
    [11] SUN ZH G, WU Y, WEI CH T, et al. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling[J]. Chinese Optics, 2021, 14(1): 77-86. (in Chinese) doi: 10.37188/CO.2020-0060
    [12] LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angewandte Chemie International Edition, 2017, 56(36): 10696-10701. doi: 10.1002/anie.201703703
    [13] YIN B, SADTLER B, BEREZIN M Y, et al. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition[J]. Chemical Communications, 2016, 52(74): 11127-11130. doi: 10.1039/C6CC05090E
    [14] JING Y, CAO K, ZHOU B Z, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(24): 10653-10662. doi: 10.1021/acs.chemmater.0c03831
    [15] XIANG Q Y, ZHOU B Z, CAO K, et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition[J]. Chemistry of Materials, 2018, 30(23): 8486-8494. doi: 10.1021/acs.chemmater.8b03096
    [16] CHENG C Y, MAO M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition[J]. Journal of Applied Physics, 2016, 120(8): 083103. doi: 10.1063/1.4961425
    [17] WANG D, WU D, DONG D, et al. Polarized emission from CsPbX3 perovskite quantum dots[J]. Nanoscale, 2016, 8(22): 11565-11570. doi: 10.1039/C6NR01915C
    [18] ZHOU Q CH, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651
    [19] JIANG J J. The modulation of fluorescence via metallic microstructured materials[D]. Nanjing: Nanjing University, 2015. (in Chinese)
    [20] MOYEN E, KANWAT A, CHO S, et al. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices[J]. Nanoscale, 2018, 10(18): 8591-8599. doi: 10.1039/C8NR01396A
    [21] LI J H, ZHAO D X, MENG X Q, et al. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method[J]. The Journal of Physical Chemistry B, 2006, 110(30): 14685-14687. doi: 10.1021/jp061563l
    [22] GÜNER T, TOPÇU G, SAVACI U, et al. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers[J]. Nanotechnology, 2018, 29(13): 135202. doi: 10.1088/1361-6528/aaaaef
    [23] HAN Q, LV F Y, WANG H, et al. Investigation on polarization fluorescence properties of all-inorganic perovskite CsPbBr3 microrods[J]. Semiconductor Optoelectronics, 2019, 40(6): 810-814. (in Chinese)
    [24] SHI ZH F, LI Y, LI S, et al. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2017, 5(34): 8699-8706. doi: 10.1039/C7TC03104A
  • 加载中
图(5)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  436
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-07-25
  • 录用日期:  2022-10-28
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回