留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析

朱沁雨 陈梅蕊 陆焕钧 樊丽娜 彭建涛 孙会娟 徐国定 毛红敏 曹召良

朱沁雨, 陈梅蕊, 陆焕钧, 樊丽娜, 彭建涛, 孙会娟, 徐国定, 毛红敏, 曹召良. 微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析[J]. 中国光学(中英文), 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176
引用本文: 朱沁雨, 陈梅蕊, 陆焕钧, 樊丽娜, 彭建涛, 孙会娟, 徐国定, 毛红敏, 曹召良. 微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析[J]. 中国光学(中英文), 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176
ZHU Qin-yu, CHEN Mei-rui, LU Huan-jun, FAN Li-na, PENG Jian-tao, SUN Hui-juan, XU Guo-ding, MAO Hong-min, CAO Zhao-liang. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176
Citation: ZHU Qin-yu, CHEN Mei-rui, LU Huan-jun, FAN Li-na, PENG Jian-tao, SUN Hui-juan, XU Guo-ding, MAO Hong-min, CAO Zhao-liang. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176

微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析

基金项目: “十四五”江苏省重点学科资助项目(No. 2021135);中国航天科技集团公司第八研究院产学研合作基金资助项目 (No. SAST2020-025);北京联合大学科研项目资助(No. ZK70202007);江苏省自然科学基金青年基金项目(No. BK20220640);江苏省基础科学(自然科学)研究面上项目(No. 22KJB150011)
详细信息
    作者简介:

    朱沁雨(1997—),男,江苏无锡人,硕士研究生,2019年于常熟理工学院获得学士学位,主要研究方向为光电仪器与智能检测技术。E-mail:zhuqywx@163.com

    曹召良(1974 —),男,河南济源人,博士,教授,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统、光学设计、光学实验以及理论分析和模拟工作。E-mail:caozl@usts.edu.cn

  • 中图分类号: O436.1

Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor

Funds: Supported by the Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Industry-University-Institute Cooperation Foundation of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. SAST2020-025); Academic Research Projects of Beijing Union University (No. ZK70202007); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 22KJB150011)
More Information
  • 摘要:

    微透镜阵列的衍射效应会影响夏克—哈特曼波前探测器的探测精度。本文根据惠更斯-菲涅耳衍射理论建立二维微透镜阵列衍射模型,模拟分析使用理想平行光入射微透镜阵列时在焦平面产生的二维衍射光斑阵列。然后,通过计算衍射光斑偏移一个像素的过程中质心的误差,确定最大质心计算误差。接着,利用模式法进行波前重构,获得波前探测误差。仿真结果显示:在偏移0.21和0.79个像素,即波面偏转0.03°和0.13°时,衍射导致的波前误差最大为0.125 λ。最后,实验验证了该误差计算方法的有效性。该研究结果可为夏克一哈特曼波前探测器的设计提供理论依据。

     

  • 图 1  单个子孔径光斑质心计算示意图

    Figure 1.  Schematic diagram of single subaperture spot centroid calculation

    图 2  微透镜衍射示意图

    Figure 2.  Schematic diagram of microlens diffraction

    图 3  微透镜阵列衍射成像示意图

    Figure 3.  Schematic diagram of microlens array diffraction imaging

    图 4  (a)任一有衍射光斑中心及 (b) 任一无衍射光斑中心光强分布

    Figure 4.  Central intensity distribution of (a) any diffraction spot and (b) any non diffraction spot

    图 5  离散化后的仿真光斑图

    Figure 5.  Simulated spot diagram after discretization

    图 6  (a) 无衍射和 (b) 有衍射的光斑偏移1个像素过程中的质心计算误差; (c) 衍射效应造成的质心计算误差

    Figure 6.  Centroid calculation error in the process of (a) diffraction free and (b) diffraction spot shifting by 1 pixel; (c) calculation error of centroid caused by diffraction effect

    图 7  (a)无衍射的光斑偏移0.79 像素的重构波前;(b) 有衍射的光斑偏移0.79 像素的重构波前;(c) 最大误差波前

    Figure 7.  (a) Reconstructed wavefront with diffraction free spot offset of 0.79 pixels; (b) reconstructed wavefront with diffraction spot offset of 0.79 pixels; (c) maximum error wavefront

    图 8  (a) 无衍射的光斑偏移1个像素过程中的波前倾斜误差;(b) 有衍射的光斑偏移1个像素过程中的波前倾斜误差;(c)衍射效应造成的波前倾斜误差

    Figure 8.  (a)Wavefront tilt error in the process of diffraction free spot shifting by 1 pixel; (b) wavefront tilt error in the process of diffraction spot shifting by 1 pixel; (c) wavefront tilt error caused by diffraction effect

    图 9  相对误差

    Figure 9.  Relative error

    图 10  哈特曼波前探测实验装置图

    Figure 10.  Experimental diagram of Hartmann wavefront detection device

    图 11  (a) 实验光斑图;(b)初始波前;(c)倾斜波前

    Figure 11.  (a) Experimental spot diagram; (b) initial warefront (c) inclined wavefront

    图 12  (a) 实际波前倾斜量与旋转角度的关系曲线;(b) 仿真波前倾斜量与旋转角度关系曲线;(c) 实验波前倾斜量与旋转角度关系曲线;(d) 波前倾斜误差曲线

    Figure 12.  (a) Relation curve between actual wavefront tilt and rotation angle; (b) relationship curve between simulated wavefront tilt and rotation angle; (c) relation curve between experimental wavefront tilt and rotation angle; (d) wavefront tilt error curve

  • [1] 姜文汉, 鲜浩, 杨泽平, 等. 哈特曼波前传感器的应用[J]. 量子电子学报,1998,15(2):228-235.

    JIANG W H, XIAN H, YANG Z P, et al. Applications of shack-Hartmann wavefront sensor[J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 228-235. (in Chinese)
    [2] ZAVALOVA V Y, KUDRYASHOV A V. Shack-Hartmann wavefront sensor for laser beam analyses[J]. Proceedings of SPIE, 2002, 4493: 277-284. doi: 10.1117/12.454723
    [3] 程少园, 曹召良, 胡立发, 等. 用夏克-哈特曼探测器测量人眼波前像差[J]. 光学 精密工程,2010,18(5):1060-1067.

    CHENG SH Y, CAO ZH L, HU L F, et al. Measurement of wavefront aberrations of human eyes with Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 2010, 18(5): 1060-1067. (in Chinese)
    [4] OGANE H, AKIYAMA M, OYA S, et al. Atmospheric turbulence profiling with multi-aperture scintillation of a Shack–Hartmann sensor[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(4): 5778-5788. doi: 10.1093/mnras/stab105
    [5] XU L, WANG J, YAO K, et al. Application of the Gaussian modeling algorithm to a Shack–Hartmann wavefront sensor for daylight adaptive optics[J]. Optics Letters, 2021, 46(17): 4196-4199. doi: 10.1364/OL.434941
    [6] 苏鹏程, 陈宇, 张家铭, 等. 基于六边形紧密拼接结构的仿生复眼系统设计[J]. 红外与激光工程,2021,50(4):20200338. doi: 10.3788/IRLA20200338

    SU P CH, CHEN Y, ZHANG J M, et al. Design of bionic compound eye system based on hexagonal closely spliced structure[J]. Infrared and Laser Engineering, 2021, 50(4): 20200338. (in Chinese) doi: 10.3788/IRLA20200338
    [7] 程利群, 景文博, 王晓曼. 夏克-哈特曼波前传感器光斑质心探测方法比较与分析[J]. 长春理工大学学报(自然科学版),2014,37(3):23-26.

    CHENG L Q, JING W B, WANG X M. Comparison and analysis of shack-Hartmann wave-front sensor spot centroid detection methods[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(3): 23-26. (in Chinese)
    [8] PRIETO P M, VARGAS-MARTÍN F, GOELZ S, et al. Analysis of the performance of the Hartmann–Shack sensor in the human eye[J]. Journal of the Optical Society of America A, 2000, 17(8): 1388-1398. doi: 10.1364/JOSAA.17.001388
    [9] 李晶, 巩岩, 呼新荣, 等. 哈特曼-夏克波前传感器的高精度质心探测方法[J]. 中国激光,2014,41(3):0316002. doi: 10.3788/CJL201441.0316002

    LI J, GONG Y, HU X R, et al. A high-precision centroid detecting method for Hartmann-shack wavefront sensor[J]. Chinese Journal of Lasers, 2014, 41(3): 0316002. (in Chinese) doi: 10.3788/CJL201441.0316002
    [10] 师亚萍, 刘缠牢. 提高夏克-哈特曼波前传感器光斑质心的定位精度[J]. 激光与光电子学进展,2017,54(8):081201.

    SHI Y P, LIU CH L. Positioning accuracy improvement of spot centroid for shack-Hartmann wavefront sensor[J]. Laser &Optoelectronics Progress, 2017, 54(8): 081201. (in Chinese)
    [11] 李旭旭, 李新阳, 王彩霞. 哈特曼传感器子孔径光斑的局部自适应阈值分割方法[J]. 光电工程,2018,45(10):170699.

    LI X X, LI X Y, WANG C X. Local adaptive threshold segmentation method for subapture spots of shack-Hartmann sensor[J]. Opto-Electronic Engineering, 2018, 45(10): 170699. (in Chinese)
    [12] BAIK S H, PARK S K, KIM C J, et al. A center detection algorithm for shack–Hartmann wavefront sensor[J]. Optics & Laser Technology, 2007, 39(2): 262-267.
    [13] RUFFIEUX P, SCHARF T, HERZIG H P, et al. On the chromatic aberration of microlenses[J]. Optics Express, 2006, 14(11): 4687-4694. doi: 10.1364/OE.14.004687
    [14] 韩妍娜, 胡新奇, 董冰. 一种扩大夏克-哈特曼波前传感器动态范围的迭代外推法[J]. 光学学报,2020,40(16):1611004. doi: 10.3788/AOS202040.1611004

    HAN Y N, HU X Q, DONG B. Iterative extrapolation method to expand dynamic range of shack-Hartmann wavefront sensors[J]. Acta Optica Sinica, 2020, 40(16): 1611004. (in Chinese) doi: 10.3788/AOS202040.1611004
    [15] WANG K, XU K F. A review on wavefront reconstruction methods[C]. 2021 4th International Conference on Information Systems and Computer Aided Education, Association for Computing Machinery, 2021: 1528-1531.
    [16] PRIMOT J. Theoretical description of Shack–Hartmann wave-front sensor[J]. Optics Communications, 2003, 222(1-6): 81-92. doi: 10.1016/S0030-4018(03)01565-7
    [17] 刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850. doi: 10.37188/CO.2021-0014

    LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi: 10.37188/CO.2021-0014
    [18] 夏明亮. 高精度人眼像差哈特曼探测器的研制[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2011.

    XIA M L. The development of high precision Hartmann wavefront detector for eye aberration[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2011. (in Chinese)
    [19] JOHNSON T P, SASIAN J. Zernike monomials in wide field of view optical designs[J]. Applied Optics, 2020, 59(22): G146-G153. doi: 10.1364/AO.392305
    [20] LAKSHMINARAYANAN V, FLECK A. Zernike polynomials: a guide[J]. Journal of Modern Optics, 2011, 58(7): 545-561. doi: 10.1080/09500340.2011.554896
    [21] 李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学,2022,15(4):761-769. doi: 10.37188/CO.2022-0018

    LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese) doi: 10.37188/CO.2022-0018
  • 加载中
图(12)
计量
  • 文章访问数:  1180
  • HTML全文浏览量:  679
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-09-06
  • 网络出版日期:  2022-11-01

目录

    /

    返回文章
    返回