留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型成像模式下非视域成像重建算法研究现状

赵禄达 董骁 徐世龙 胡以华 张鑫源 钟易成

赵禄达, 董骁, 徐世龙, 胡以华, 张鑫源, 钟易成. 典型成像模式下非视域成像重建算法研究现状[J]. 中国光学(中英文), 2023, 16(3): 479-499. doi: 10.37188/CO.2022-0186
引用本文: 赵禄达, 董骁, 徐世龙, 胡以华, 张鑫源, 钟易成. 典型成像模式下非视域成像重建算法研究现状[J]. 中国光学(中英文), 2023, 16(3): 479-499. doi: 10.37188/CO.2022-0186
ZHAO Lu-da, DONG Xiao, XU Shi-long, HU Yi-hua, ZHANG Xin-yuan, ZHONG Yi-cheng. Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities[J]. Chinese Optics, 2023, 16(3): 479-499. doi: 10.37188/CO.2022-0186
Citation: ZHAO Lu-da, DONG Xiao, XU Shi-long, HU Yi-hua, ZHANG Xin-yuan, ZHONG Yi-cheng. Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities[J]. Chinese Optics, 2023, 16(3): 479-499. doi: 10.37188/CO.2022-0186

典型成像模式下非视域成像重建算法研究现状

基金项目: 国家自然科学基金(No. 61871389,No.62201597);国防科技大学科研计划重大项目(No. ZK18-01-02,No. ZK22-35);国防科技大学自主科研创新基金(No. 22-ZZCX-07);国防科技创新特区项目(No. 22-TQ23-07-ZD-01-001);军事类研究生资助课题(No. JY2021B042);湖南省研究生科研创新项目(No. CX20220045)
详细信息
    作者简介:

    赵禄达(1992—),男,四川峨眉山人,博士研究生,2015年、2019年于国防科技大学分别获得学士、硕士学位,主要从事计算成像、计算机视觉、进化计算等方面的研究。E-mail:zhaoluda@nudt.edu.cn

    胡以华(1962—),男,安徽怀宁人,博士,教授,博士生导师,1988年、1997年于西北电讯工程学院和中国科学院安徽光学精密机械研究所分别获得硕士、博士学位,主要从事光电对抗理论与应用等方面的研究。E-mail:skr_hyh@126.com

  • 中图分类号: O439

Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities

Funds: Supported by National Natural Science Foundation of China (No. 61871389, No.62201597); the Research Plan Project of the National University of Defense Technology (No. ZK18-01-02, No. ZK22-35); Independent Scientific Research Project of National University of Defense Technology (No. 22-ZZCX-07); National Defense Science and Technology Innovation Special Zone Project (No. 22-TQ23-07-ZD-01-001); Military Graduate Student Funding Priorities (No. JY2021B042); Graduate Research Innovation Project of Hunan Province (No. CX20220045)
More Information
  • 摘要:

    非视域(Non-Line-of-Sight, NLoS)成像是近年来发展起来的一项新兴技术,其通过分析成像场景中的中介面信息来重建隐藏场景,实现了“拐弯成像”的效果,在多个领域有巨大的应用价值。本文主要针对NLoS成像重建算法进行综述性研究。考虑到目前NLoS成像分类存在交叉和非独立现象,本文基于物理成像模式和算法模型的不同特点,对其进行了独立的重新分类。根据提出的分类标准分别对传统和基于深度学习的NLoS成像重建算法进行了归纳总结,对代表性算法的发展现状进行了概述,推导了典型方法的实现原理,并对比了传统重建方法和基于深度学习的NLoS成像重建算法的重建应用结果。总结了NLoS成像目前存在的挑战和未来的发展方向。该研究对不同类型的NLoS成像进行了较为全面的梳理,对NLoS成像重建算法在内的一系列研究的进一步发展有着一定的支撑和推动作用。

     

  • 图 1  典型的NLoS成像模式

    Figure 1.  Typical NLoS imaging modalities

    图 2  NLoS成像重建算法的分类

    Figure 2.  Classification of reconstruction algorithms of NLoS imaging

    图 3  (a) NLoS 成像的三反射光轨迹及(b)隐藏物体重建的原理示意图(改编自文献[8])

    Figure 3.  Schematic diagrams of (a) three reflected light trajectories of NLoS imaging and (b) hidden object reconstruction principle (adapted from Ref. [8])

    图 4  反向椭球投影重建算法的原理示意图[11]

    Figure 4.  Schematic diagram of the principle of the inverse ellipsoidal projection reconstruction algorithm[11]

    图 5  共焦NLoS成像的硬件配置示意图[29]

    Figure 5.  Schematic diagram of the hardware configuration for confocal NLoS imaging[29]

    图 6  基于遮挡增强成像的被动NLoS成像系统示意图[49]

    Figure 6.  Schematic diagram of the passive NLoS imaging system based on occlusion-enhanced imaging[49]

    图 7  通过中介墙墙角阴影进行NLoS成像的示意图

    Figure 7.  Schematic diagram of NLoS imaging through intermediary wall corner penumbra

    图 8  基于深度学习的主动NLoS成像的实现过程示意图(改编自文献[62])

    Figure 8.  Schematic diagram of the active NLoS imaging implementing process based on deep learning (adapted from Ref. [62])

    图 9  基于深度学习和光传输矩阵分解的NLoS成像的原理示意图(改编自文献[74])

    Figure 9.  Schematic diagram of the NLoS imaging based on deep learning and optical transport matrices decomposition (adapted from Ref. [74])

    图 10  (a)基于深度学习的被动NLoS成像场景及(b)流行嵌入和最优传输分步生成式网络实现过程示意图(改编自文献[84])

    Figure 10.  (a) Passive NLoS imaging and (b) implementing process of popular embedding and optimal transmission generated step by step based on deep learning (adapted from Ref. [84])

    图 11  使用ShapeNet和LCT算法对6种隐藏场景进行重建的结果对比[62]

    Figure 11.  Comparison of reconstruction results of 6 hidden scenes using ShapeNet and LCT algorithms[62]

    图 12  使用CNN和两种PR算法(HIO、Alt-Min)对3种隐藏场景进行重建的结果对比[72]

    Figure 12.  Comparison of reconstruction results of 3 hidden scenes using CNN and PR algorithms (HIO and Alt-Min)[72]

    图 13  NeTF网络结构示意图[75]

    Figure 13.  An illustration of the NeTF network architecture [75]

    图 14  使用NeTF网络与传统NLoS成像中的Phasor Field、快速F-K迁移法和DLCT算法[34]对6种隐藏场景进行重建的结果对比[75]

    Figure 14.  Comparison of reconstruction results of 6 hidden scenes using NeTF and traditional NLoS reconstruction algorithms (Phasor Field, F-K and DLCT)[75]

    图 15  使用NLOS-OT与U-Net和C-GAN对4类隐藏场景进行重建的结果对比[80]

    Figure 15.  Comparison of reconstruction results of 4 type of hidden scenes using NLOS-OT and U-Net, C-GAN[80]

    表  1  不同种类的NLoS重建SOTA算法的多角度总结和对比分析

    Table  1.   A multi-perspective summary and comparative analysis of different kinds of NLoS reconstruction SOTA algorithms

    算法分类SOTANLoS场景中的硬件任务重建质量重建速度实际应用
    的差距
    传统
    重建
    算法
    主动
    NLoS
    成像
    基于时间信息①空间多路复用感知+
    压缩感知[19]
    ②空间点扩散函数的优化[20]
    ①数字微反射镜+SPAD
    ②SPAD阵列
    2D重建①好
    ②较好
    较快较大
    基于光强逆优化[39]传统相机2D重建/跟踪/定位一般较快
    基于向量场衍射积分法[41]SPAD3D重建较好
    被动
    NLoS
    成像
    基于光强①添加遮挡的优化[48]
    ②优化墙角阴影[52]
    传统相机①2D重建
    ②2D重建/定位
    ①较好
    ②好
    一般
    基于偏振性逆优化[56]偏光器+传统相机2D重建一般
    基于相干性双谱+相位检索[58]遮挡板+阵列相机2D重建一般
    基于深度
    学习的
    重建算法
    主动
    NLoS
    成像
    基于端到端学习快速光场断层扫描+
    深度神经网络[64]
    条纹相机3D重建较好很快
    物理和深度学习
    模型融合
    ①神经瞬态场[75]
    ②逆矩阵生成+
    深度神经网络[74]
    ①SPAD
    ②传统相机
    ①3D重建
    ②2D重建
    一般较大
    被动NLoS
    成像
    基于端到端学习最有传输理论+
    深度神经网络[80]
    传统相机2D重建很好
    下载: 导出CSV
  • [1] RAMESH R, DAVIS J. 5d time-light transport matrix: What can we reason about scene properties?[EB/OL]. [2008-03-01] [2008-03-01]. http://dspace.mt.edu/handle/1721.1/67888.
    [2] KIRMANI A, HUTCHISON T, DAVIS J, et al.. Looking around the corner using transient imaging[C]. 2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009: 159-166.
    [3] VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 3(1): 745. doi: 10.1038/ncomms1747
    [4] MAEDA T, SATAT G, SWEDISH T, et al. Recent advances in imaging around corners[J]. arXiv preprint arXiv:, 1910, 05613: 2019.
    [5] GENG R X, HU Y, CHEN Y. Recent advances on non-line-of-sight imaging: Conventional physical models, deep learning, and new scenes[J]. APSIPA Transactions on Signal and Information Processing, 2021, 11(1): e1.
    [6] FACCIO D, VELTEN A, WETZSTEIN G. Non-line-of-sight imaging[J]. Nature Reviews Physics, 2020, 2(6): 318-327. doi: 10.1038/s42254-020-0174-8
    [7] 吴术孔, 张宇宁. 被动非视域成像方法的研究进展[J]. 光电子技术,2021,41(2):87-93.

    WU SH K, ZHANG Y N. Research progress of passive non-line-of-sight imaging methods[J]. Optoelectronic Technology, 2021, 41(2): 87-93. (in Chinese)
    [8] YE J T, HUANG X, LI ZH P, et al. Compressed sensing for active non-line-of-sight imaging[J]. Optics Express, 2021, 29(2): 1749-1763. doi: 10.1364/OE.413774
    [9] GUPTA O, WILLWACHER T, VELTEN A, et al. Reconstruction of hidden 3D shapes using diffuse reflections[J]. Optics Express, 2012, 20(17): 19096-19108. doi: 10.1364/OE.20.019096
    [10] LAURENZIS M, KLEIN J, BACHER E, et al. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths[J]. Optics Letters, 2015, 40(20): 4815-4818. doi: 10.1364/OL.40.004815
    [11] ARELLANO V, GUTIERREZ D, JARABO A. Fast back-projection for non-line of sight reconstruction[J]. Optics Express, 2017, 25(10): 11574-11583. doi: 10.1364/OE.25.011574
    [12] NAIK N, ZHAO SH, VELTEN A, et al.. Single view reflectance capture using multiplexed scattering and time-of-flight imaging[C]. Proceedings of the 2011 SIGGRAPH Asia Conference, Association for Computing Machinery, 2011: 171.
    [13] BUTTAFAVA M, ZEMAN J, TOSI A, et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode[J]. Optics Express, 2015, 23(16): 20997-21011. doi: 10.1364/OE.23.020997
    [14] LA MANNA M, KINE F, BREITBACH E, et al. Error backprojection algorithms for non-line-of-sight imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1615-1626. doi: 10.1109/TPAMI.2018.2843363
    [15] JIN CH F, XIE J H, ZHANG S Q, et al. Reconstruction of multiple non-line-of-sight objects using back projection based on ellipsoid mode decomposition[J]. Optics Express, 2018, 26(16): 20089-20101. doi: 10.1364/OE.26.020089
    [16] CHAN S, WARBURTON R E, GARIEPY G, et al. Non-line-of-sight tracking of people at long range[J]. Optics Express, 2017, 25(9): 10109-10117. doi: 10.1364/OE.25.010109
    [17] MUSARRA G, LYONS A, CONCA E, et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera[J]. Physical Review Applied, 2019, 12(1): 011002. doi: 10.1103/PhysRevApplied.12.011002
    [18] YANG W Q, ZHANG CH, JIANG W J, et al. None-line-of-sight imaging enhanced with spatial multiplexing[J]. Optics Express, 2022, 30(4): 5855-5867. doi: 10.1364/OE.450238
    [19] HEIDE F, O’TOOLE M, ZANG K, et al. Non-line-of-sight imaging with partial occluders and surface normals[J]. ACM Transactions on Graphics, 2019, 38(3): 22.
    [20] PEI CH Q, ZHANG A K, DENG Y, et al. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions[J]. Optics Express, 2021, 29(20): 32349-32364. doi: 10.1364/OE.439372
    [21] PANDHARKAR R, VELTEN A, BARDAGJY A, et al.. Estimating motion and size of moving non-line-of-sight objects in cluttered environments[C]. CVPR 2011, IEEE, 2011: 265-272.
    [22] HEIDE F, XIAO L, HEIDRICH W, et al.. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 3222-3229.
    [23] TSAI C Y, KUTULAKOS K N, NARASIMHAN S G, et al.. The geometry of first-returning photons for non-line-of-sight imaging[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2336-2344.
    [24] KADAMBI A, ZHAO H, SHI B X, et al. Occluded imaging with time-of-flight sensors[J]. ACM Transactions on Graphics, 2016, 35(2): 15.
    [25] TSAI C Y, SANKARANARAYANAN A C, GKIOULEKAS I. Beyond volumetric albedo-a surface optimization framework for non-line-of-sight imaging[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 1545-1555.
    [26] ISERINGHAUSEN J, HULLIN M B. Non-line-of-sight reconstruction using efficient transient rendering[J]. ACM Transactions on Graphics, 2020, 39(1): 8.
    [27] AHN B, DAVE A, VEERARAGHAVAN A, et al.. Convolutional approximations to the general non-line-of-sight imaging operator[C]. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, IEEE, 2019: 7888-7898.
    [28] CHEN J H, ZHANG Y, GUO SH SH, et al. Joint estimation of NLOS building layout and targets via sparsity-driven approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114513.
    [29] LIU X CH, BAUER S, VELTEN A. Analysis of feature visibility in non-line-of-sight measurements[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 10132-10140.
    [30] LINDELL D B, WETZSTEIN G, O'TOOLE M. Wave-based non-line-of-sight imaging using fast f-k migration[J]. ACM Transactions on Graphics, 2019, 38(4): 116.
    [31] YOUNG S I, LINDELL D B, GIROD B, et al.. Non-line-of-sight surface reconstruction using the directional light-cone transform[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 1404-1413.
    [32] O’TOOLE M, LINDELL D B, WETZSTEIN G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 2018, 555(7696): 338-341. doi: 10.1038/nature25489
    [33] ISOGAWA M, CHAN D, YUAN Y, et al.. Efficient non-line-of-sight imaging from transient sinograms[C]. Proceedings of the 16th European Conference on Computer Vision, Springer, 2020: 193-208.
    [34] WU CH, LIU J J, HUANG X, et al. Non–line-of-sight imaging over 1.43 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2024468118. doi: 10.1073/pnas.2024468118
    [35] WANG B, ZHENG M Y, HAN J J, et al. Non-line-of-sight imaging with picosecond temporal resolution[J]. Physical Review Letters, 2021, 127(5): 053602. doi: 10.1103/PhysRevLett.127.053602
    [36] THRAMPOULIDIS C, SHULKIND G, XU F H, et al. Exploiting occlusion in non-line-of-sight active imaging[J]. IEEE Transactions on Computational Imaging, 2018, 4(3): 419-431. doi: 10.1109/TCI.2018.2829599
    [37] RAPP J, SAUNDERS C, TACHELLA J, et al. Seeing around corners with edge-resolved transient imaging[J]. Nature Communications, 2020, 11(1): 5929. doi: 10.1038/s41467-020-19727-4
    [38] GARIEPY G, TONOLINI F, HENDERSON R, et al. Detection and tracking of moving objects hidden from view[J]. Nature Photonics, 2016, 10(1): 23-26. doi: 10.1038/nphoton.2015.234
    [39] KLEIN J, PETERS C, MARTÍN J, et al. Tracking objects outside the line of sight using 2D intensity images[J]. Scientific Reports, 2016, 6(1): 32491. doi: 10.1038/srep32491
    [40] LIU X CH, VELTEN A. The role of wigner distribution function in non-line-of-sight imaging[C]. 2020 IEEE International Conference on Computational Photography (ICCP), IEEE, 2020: 1-12.
    [41] LIU X CH, GUILLÉN I, LA MANNA M, et al. Non-line-of-sight imaging using phasor-field virtual wave optics[J]. Nature, 2019, 572(7771): 620-623. doi: 10.1038/s41586-019-1461-3
    [42] REZA S A, LA MANNA M, BAUER S, et al. Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications[J]. Optics Express, 2019, 27(20): 29380-29400. doi: 10.1364/OE.27.029380
    [43] LA MANNA M, NAM J H, REZA S A, et al. Non-line-of-sight-imaging using dynamic relay surfaces[J]. Optics Express, 2020, 28(4): 5331-5339. doi: 10.1364/OE.383586
    [44] LIU X CH, BAUER S, VELTEN A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems[J]. Nature Communications, 2020, 11(1): 1645. doi: 10.1038/s41467-020-15157-4
    [45] XIN SH M, NOUSIAS S, KUTULAKOS K N, et al.. A theory of fermat paths for non-line-of-sight shape reconstruction[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 6793-6802.
    [46] SMITH B M, O'TOOLE M, GUPTA M. Tracking multiple objects outside the line of sight using speckle imaging[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6258-6266.
    [47] SASAKI T, LEGER J R. Light-field reconstruction from scattered light using plenoptic data[J]. Proceedings of SPIE, 2018, 10772: 1077203.
    [48] SAUNDERS C, MURRAY-BRUCE J, GOYAL V K. Computational periscopy with an ordinary digital camera[J]. Nature, 2019, 565(7740): 472-475. doi: 10.1038/s41586-018-0868-6
    [49] SAUNDERS C, BOSE R, MURRAY-BRUCE J, et al.. Multi-depth computational periscopy with an ordinary camera[C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020: 9299-9305.
    [50] BARADAD M, YE V, YEDIDIA A B, et al.. Inferring light fields from shadows[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6267-6275.
    [51] BOUMAN K L, YE V, YEDIDIA A B, et al.. Turning corners into cameras: Principles and methods[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, 2017: 2289-2297.
    [52] SEIDEL S W, MURRAY-BRUCE J, MA Y T, et al. Two-dimensional non-line-of-sight scene estimation from a single edge occluder[J]. IEEE Transactions on Computational Imaging, 2020, 7: 58-72.
    [53] SEIDEL S W, MA Y T, MURRAY-BRUCE J, et al.. Corner occluder computational periscopy: estimating a hidden scene from a single photograph[C]. 2019 IEEE International Conference on Computational Photography (ICCP), IEEE, 2019: 1-9.
    [54] YEDIDIA A B, BARADAD M, THRAMPOULIDIS C, et al.. Using unknown occluders to recover hidden scenes[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 12223-12231.
    [55] MAEDA T, WANG Y Q, RASKAR R, et al.. Thermal non-line-of-sight imaging[C]. 2019 IEEE International Conference on Computational Photography (ICCP), IEEE, 2019: 1-11.
    [56] TANAKA K, MUKAIGAWA Y, KADAMBI A. Polarized non-line-of-sight imaging[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 2133-2142.
    [57] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790. doi: 10.1038/nphoton.2014.189
    [58] DIVITT S, GARDNER D F, WATNIK A T. Imaging around corners in the mid-infrared using speckle correlations[J]. Optics Express, 2020, 28(8): 11051-11064. doi: 10.1364/OE.388260
    [59] BOGER-LOMBARD J, KATZ O. Passive optical time-of-flight for non line-of-sight localization[J]. Nature Communications, 2019, 10(1): 3343. doi: 10.1038/s41467-019-11279-6
    [60] BATARSEH M, SUKHOV S, SHEN Z, et al. Passive sensing around the corner using spatial coherence[J]. Nature Communications, 2018, 9(1): 3629. doi: 10.1038/s41467-018-05985-w
    [61] BECKUS A, TAMASAN A, ATIA G K. Multi-modal non-line-of-sight passive imaging[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3372-3382. doi: 10.1109/TIP.2019.2896517
    [62] CHOPITE J G, HULLIN M B, WAND M, et al.. Deep non-line-of-sight reconstruction[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 957-966.
    [63] SATAT G, TANCIK M, GUPTA O, et al. Object classification through scattering media with deep learning on time resolved measurement[J]. Optics Express, 2017, 25(15): 17466-17479. doi: 10.1364/OE.25.017466
    [64] FENG X H, GAO L. Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging[J]. Nature Communications, 2021, 12(1): 2179. doi: 10.1038/s41467-021-22461-0
    [65] CHEN W ZH, DANEAU S, BROSSEAU C, et al.. Steady-state non-line-of-sight imaging[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 6783-6792.
    [66] CHANDRAN S, JAYASURIYA S. Adaptive lighting for data-driven non-line-of-sight 3d localization and object identification[C]. Proceedings of the 30th British Machine Vision Conference 2019, BMVC, 2019.
    [67] CAO Y P, LIANG R, YANG J X, et al. Computational framework for steady-state NLOS localization under changing ambient illumination conditions[J]. Optics Express, 2022, 30(2): 2438-2452. doi: 10.1364/OE.444080
    [68] CARAMAZZA P, BOCCOLINI A, BUSCHEK D, et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8(1): 11945. doi: 10.1038/s41598-018-30390-0
    [69] MUSARRA G, CARAMAZZA P, TURPIN A, et al. Detection, identification, and tracking of objects hidden from view with neural networks[J]. Proceedings of the SPIE, 2019, 10978: 1097803.
    [70] SU SH CH, HEIDE F, WETZSTEIN G, et al.. Deep end-to-end time-of-flight imaging[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 6383-6392.
    [71] CHEN Y, QU B, LU X Q. Robust speckle-autocorrelation non-line-of-sight imaging with generative adversarial networks[J]. Proceedings of the SPIE, 2022, 12083: 120830B.
    [72] METZLER C A, HEIDE F, RANGARAJAN P, et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging[J]. Optica, 2020, 7(1): 63-71. doi: 10.1364/OPTICA.374026
    [73] LEI X, HE L Y, TAN Y X, et al.. Direct object recognition without line-of-sight using optical coherence[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 11729-11738.
    [74] AITTALA M, SHARMA P, MURMANN L, et al. Computational mirrors: blind inverse light transport by deep matrix factorization[J]. Proceedings of the 33rd International Conference on Neural Information Processing Systems,Curran Associates Inc., 2019: 1283.
    [75] SHEN S Y, WANG Z, LIU P, et al. Non-line-of-sight imaging via neural transient fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2257-2268. doi: 10.1109/TPAMI.2021.3076062
    [76] CHEN W ZH, WEI F Y, KUTULAKOS K N, et al. Learned feature embeddings for non-line-of-sight imaging and recognition[J]. ACM Transactions on Graphics, 2020, 39(6): 230.
    [77] MU F ZH, MO S CH, PENG J Y, et al.. Physics to the rescue: deep non-line-of-sight reconstruction for high-speed imaging[J/OL]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2022: 1-12.
    [78] GRAU J, PLACK M, HAEHN P, et al.. Occlusion fields: an implicit representation for non-line-of-sight surface reconstruction[J/OL]. arXiv preprint arXiv: 2203.08657, 2022.
    [79] TANCIK M, SATAT G, RASKAR R. Flash photography for data-driven hidden scene recovery[J/OL]. arXiv preprint arXiv: 1810.11710, 2018.
    [80] GENG R X, HU Y, LU ZH, et al. Passive non-line-of-sight imaging using optimal transport[J]. IEEE Transactions on Image Processing, 2021, 31: 110-124.
    [81] HE J H, WU SH K, WEI R, et al. Non-line-of-sight imaging and tracking of moving objects based on deep learning[J]. Optics Express, 2022, 30(10): 16758-16772. doi: 10.1364/OE.455803
    [82] ISOGAWA M, YUAN Y, O'TOOLE M, et al.. Optical non-line-of-sight physics-based 3D human pose estimation[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 7011-7020.
    [83] HE Y, ZHANG D H, HU Y, et al. . Non-line-of-sight imaging with radio signals[C]. 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), IEEE, 2020: 11-16.
    [84] GALINDO M, MARCO J, O'TOOLE M, et al.. A dataset for benchmarking time-resolved non-line-of-sight imaging[C]. ACM SIGGRAPH 2019 Posters, Association for Computing Machinery, 2019: 73.
    [85] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/AO.21.002758
    [86] NETRAPALLI P, JAIN P, SANGHAVI S. Phase retrieval using alternating minimization[J]. Proceedings of the 26th International Conference on Neural Information Processing Systems,Curran Associates Inc., 2013: 2796-2804.
    [87] KUPYN O, BUDZAN V, MYKHAILYCH M, et al.. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 8183-8192.
    [88] OU Z, WU J M, YANG Y H, et al. Computational adaptive optics for high-resolution non-line-of-sight imaging[J]. Optics Express, 2022, 30(3): 4583-4591. doi: 10.1364/OE.447174
    [89] GROSSMAN E N, SASAKI T, LEGER J R. Passive terahertz non-line-of-sight imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(5): 489-498. doi: 10.1109/TTHZ.2022.3173168
    [90] 曹丙花, 张宇盟, 范孟豹, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学,2022,15(3):405-417. doi: 10.37188/CO.2021-0198

    CAO B H, ZHANG Y M, FAN M B, et al. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. (in Chinese) doi: 10.37188/CO.2021-0198
    [91] 陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学,2020,13(5):919-935. doi: 10.37188/CO.2020-0037

    LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 2020, 13(5): 919-935. (in Chinese) doi: 10.37188/CO.2020-0037
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1674
  • HTML全文浏览量:  591
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2022-09-21
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回