留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载宽温条件下反射镜组件与粘接层设计

张家齐 郭艺博 张友建 张志华

张家齐, 郭艺博, 张友建, 张志华. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文), 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194
引用本文: 张家齐, 郭艺博, 张友建, 张志华. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文), 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194
ZHANG Jia-qi, GUO Yi-bo, ZHANG You-jian, ZHANG Zhi-hua. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194
Citation: ZHANG Jia-qi, GUO Yi-bo, ZHANG You-jian, ZHANG Zhi-hua. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194

机载宽温条件下反射镜组件与粘接层设计

doi: 10.37188/CO.2022-0194
基金项目: 国家自然科学基金重大研究计划(No. 91338116)
详细信息
    作者简介:

    张家齐(1985—),男,吉林白山人,博士,助理研究员,硕士生导师,2019年于长春理工大学获得博士学位,主要从事伺服跟踪结构、光机系统集成方面的研究。E-mail:zjq_cust@foxmail.com

    郭艺博(1998—),男,河南周口人,硕士研究生,2020年于长春理工大学获得学士学位,主要从事激光通信终端、伺服转台结构方面的研究。E-mail:17843081568@163.com

    张友建(1992—),男,吉林敦化人,硕士,2020年于长春理工大学获得硕士学位,主要从事光机结构设计、伺服转台结构方面的研究。E–mail:756919950@qq.com

    张志华(1998—),男,山东青岛人,硕士研究生,2021年于青岛农业大学获得学士学位,主要从事光电跟瞄装置、伺服转台结构方面的研究。E-mail:zhangzhihua257@163.com

  • 中图分类号: V248.1

Design of reflector assembly and adhesive layer under airborne wide temperature conditions

Funds: Supported by the Major Research plan of the National Natural Science Foundation of China (No. 91338116)
More Information
  • 摘要:

    在机载宽温且反射镜镀膜温度较高的条件下,针对传统反射镜镶嵌件粘接工艺导致反射镜粘接失效、铟钢镶嵌件和反射镜线胀系数差异导致宽温下反射镜面型急剧下降的问题,提出了一种反射镜加工镀膜后再粘接镶嵌件的方法,并对其胶层参数进行研究。采用硅橡胶作为主粘接剂粘接反射镜与镶嵌件,利用硅橡胶固化后良好的弹性缓解支撑件热变形对反射镜面型的影响。通过多目标优化选取合适的硅橡胶粘接厚度1.1 mm,硅橡胶宽度7.2 mm,环氧胶厚度0.022 mm。仿真结果显示在重力及温度变化为−40 °C时(初始温度为20 °C),反射镜面型精度RMS值为25.91 nm,镜组模态一阶频率为242 Hz。最终面型检测RMS值为15.8 nm,结构谐振频率为213 Hz。试验结果显示,此方案使反射镜组件适用于大温差条件下工作,其结构和粘接层设计能够满足机载宽温和振动条件下的使用要求。

     

  • 图 1  机载红外搜跟系统原理

    Figure 1.  Principle of the airborne infrared searching and tracking system

    图 2  单反镜伺服系统三维模型

    Figure 2.  Three-dimensional model of the mirror servo system

    图 3  反射镜组件沿回转轴剖视结构

    Figure 3.  Profile view of mirror assembly along the axis of rotation

    图 4  胶层布置方案

    Figure 4.  Adhesive layer arrangement scheme

    图 5  反射镜组件有限元结构模型

    Figure 5.  Finite element structural model of the mirror assembly

    图 6  RTV宽度对反射镜面型及镜组模态频率的影响

    Figure 6.  Influence of RTV width on mirror shape and mirror group modal frequency

    图 7  RTV厚度对反射镜面型及镜组模态频率的影响

    Figure 7.  Influence of RTV thickness on mirror shape and mirror group modal frequency

    图 8  环氧胶厚度对反射镜面型及镜组模态频率的影响

    Figure 8.  Effect of epoxy adhesive thickness on mirror shape and mirror group modal frequency

    图 9  反射镜面型仿真拟合流程图

    Figure 9.  Flow chart of mirror shape simulation

    图 10  ZYGO干涉仪面型拟合结果

    Figure 10.  ZYGO interferometer fitting results

    图 11  组件模态分析位移云图。(a)一阶模态;(b)二阶模态;(c)三阶模态

    Figure 11.  Displacement cloud diagram of the structural modal analysis. (a) First-order mode; (b) second-order mode; (c) third-order mode

    图 12  (a)随机振动结构应力云图;(b)冲击试验应力云图

    Figure 12.  (a) Stress nephogram of a random vibration structure; (b) impact test stress nephogram

    图 13  反射镜组件试验现场。(a)随机振动;(b)温度冲击试验

    Figure 13.  Test site of mirror assembly. (a) Random vibration; (b) temperature impact test

    图 14  反射镜面型检测光路图

    Figure 14.  Optical path diagram for shape accuracy measurement of the mirror

    图 15  整体结构实际检测面型

    Figure 15.  Measuring the surface shape accuracy of the integral structure

    表  1  反射镜组件材料表

    Table  1.   List of materials for mirror assemblies

    StructureMaterialDensity
    ρ/(g·cm−3)
    Young's modulus
    E/GPa
    CTE
    α(10−6/K)
    Thermal conductivity
    λ/[W/(m·k)]
    Specific stiffness
    E/ρ(10−6·GNm/g)
    Thermal distortion ratio
    λ/α(106W/m)
    mirrorSiC3.24502.3155.0014064.58
    back plate, side plate,
    bushing part, embedded
    part, gasket
    4J328.11502.5145.0018.511
    下载: 导出CSV

    表  2  5种工况下反射镜面型拟合结果

    Table  2.   Shape fitting results of the mirror under five working conditions

    环境温度20 °C20 °C20 °C-40 °C60 °C
    重力方向XYZZZ
    PV值/nm25.9122.1255.45123.8796.78
    RMS值/nm3.733.6310.2525.9117.55
    下载: 导出CSV
  • [1] 张美君. 航空相机反射镜支撑结构优化设计及环境适应性分析[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    ZHANG M J. Optimal design and environmental adaptability analysis for mounting mirror in an aerial camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
    [2] KIM H, YANG H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 091806. doi: 10.1117/1.OE.52.9.091806
    [3] WEINGROD I, CHOU C Y, HOLMES B, et al. Design of bipod flexure mounts for the IRIS spectrometer[J]. Proceedings of SPIE, 2013, 8836: 88360Q. doi: 10.1117/12.2024478
    [4] EKINCI M, SELIMOĞLU Ö. Development of a 0.5 m clear aperture cassegrain type collimator telescope[J]. Proceedings of SPIE, 2016, 9912: 991253.
    [5] 范磊, 张景旭, 赵勇志, 等. 中型主镜的柔性半运动学支撑[J]. 光学 精密工程,2016,24(8):1965-1972. doi: 10.3788/OPE.20162408.1965

    FAN L, ZHANG J X, ZHAO Y ZH, et al. Flexible semi-kinematic support for middling primary mirror[J]. Optics and Precision Engineering, 2016, 24(8): 1965-1972. (in Chinese) doi: 10.3788/OPE.20162408.1965
    [6] 丁帅. 机载红外小目标探测系统非均匀性校正技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    DING SH. Research on non-uniformity correction technology of airborne infrared small target detection system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese)
    [7] 邵梦旗, 张雷, 李林, 等. 超轻空间相机主支撑背板的优化设计[J]. 光学学报,2019,39(3):0322001. doi: 10.3788/AOS201939.0322001

    SHAO M Q, ZHANG L, LI L, et al. Optimization design of supporting backplate for ultra-light space camera[J]. Acta Optica Sinica, 2019, 39(3): 0322001. (in Chinese) doi: 10.3788/AOS201939.0322001
    [8] 陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报,2015,29(S1):118-120,124.

    CHEN J ZH, HUANG M X, WANG X R, et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Review, 2015, 29(S1): 118-120,124. (in Chinese)
    [9] 庞文武, 陈炳耀, 陈德启, 等. 脱醇型室温硫化硅橡胶的粘接性能研究[J]. 有机硅材料,2022,36(1):57-60. doi: 10.11941/j.issn.1009-4369.2022.01.012

    PANG W W, CHEN B Y, CHEN D Q, et al. Study on the adhesive properties of dealcoholized RTV silicone rubber[J]. Silicone Material, 2022, 36(1): 57-60. (in Chinese) doi: 10.11941/j.issn.1009-4369.2022.01.012
    [10] 杨亮, 李朝辉, 乔克. 某空间反射镜支撑装调技术[J]. 红外与激光工程,2013,42(12):3277-3282. doi: 10.3969/j.issn.1007-2276.2013.12.022

    YANG L, LI ZH H, QIAO K. Support structure and assembling technique of a space mirror[J]. Infrared and Laser Engineering, 2013, 42(12): 3277-3282. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.12.022
    [11] 张琦, 时剑文, 索双富, 等. 基于Mooney-Rivlin模型和Yeoh模型的橡胶材料有限元分析[J]. 合成橡胶工业,2020,43(6):468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006

    ZHANG Q, SHI J W, SUO SH F, et al. Finite element analysis of rubber materials based on Mooney-Rivlin models and Yeoh models[J]. China Synthetic Rubber Industry, 2020, 43(6): 468-471. (in Chinese) doi: 10.3969/j.issn.1000-1255.2020.06.006
    [12] 韩旭, 吴清文, 董得义, 等. 室温硫化胶层建模在透镜结构分析中的应用[J]. 光学 精密工程,2010,18(1):118-125.

    HAN X, WU Q W, DONG D Y, et al. Application of RTV adhesive modeling to structure analysis of reflective mirror[J]. Optics and Precision Engineering, 2010, 18(1): 118-125. (in Chinese)
    [13] 崔永鹏, 何欣, 张凯. 钛合金和碳纤维的粘接技术[J]. 光学技术,2012,38(1):125-128. doi: 10.13741/j.cnki.11-1879/o4.2012.01.020

    CUI Y P, HE X, ZHANG K. Technique of cementation between the titanium alloys and carbon fibers[J]. Optical Technique, 2012, 38(1): 125-128. (in Chinese) doi: 10.13741/j.cnki.11-1879/o4.2012.01.020
    [14] 刘波, 丁亚林, 贾继强, 等. 反射镜背部嵌套粘接支撑结构的设计与分析[J]. 激光与光电子学进展,2013,50(9):091201.

    LIU B, DING Y L, JIA J Q, et al. Design and analysis of back embedded adhesive structure for mirror support[J]. Laser &Optoelectronics Progress, 2013, 50(9): 091201. (in Chinese)
    [15] 孙冬明, 潘栋, 刘宏旭, 等. 胶层厚度对多点支撑光窗面形的影响[J]. 激光与红外,2021,51(4):480-485. doi: 10.3969/j.issn.1001-5078.2021.04.013

    SUN D M, PAN D, LIU H X, et al. Influence of adhesive layer thickness on surface shape of multi-point supported light window[J]. Laser &Infrared, 2021, 51(4): 480-485. (in Chinese) doi: 10.3969/j.issn.1001-5078.2021.04.013
    [16] 付佐红, 董高彬, 程驰青, 等. 天线随机振动分析与设计优化[J]. 雷达与对抗,2022,42(1):33-37. doi: 10.19341/j.cnki.1009-0401.2022.01.009

    FU Z H, DONG G B, CHENG CH Q, et al. Random vibration analysis and design optimization of an antenna[J]. Radar &ECM, 2022, 42(1): 33-37. (in Chinese) doi: 10.19341/j.cnki.1009-0401.2022.01.009
    [17] 段飞飞, 王田宇, 温业堃, 等. 飞行器随机振动试验技术应用研究[J]. 电子产品可靠性与环境试验,2022,40(2):56-59. doi: 10.3969/j.issn.1672-5468.2022.02.012

    DUAN F F, WANG T Y, WEN Y K, et al. Research on the application of random vibration test technology of aircraft[J]. Electronic Product Reliability and Environmental Testing, 2022, 40(2): 56-59. (in Chinese) doi: 10.3969/j.issn.1672-5468.2022.02.012
    [18] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi: 10.37188/CO.2021-0143
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  163
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-10-08
  • 录用日期:  2022-11-02
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!