留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒辅助的可切换多功能超材料结构

严德贤 陈欣怡 封覃银 陆紫君 张禾 李向军 李吉宁

严德贤, 陈欣怡, 封覃银, 陆紫君, 张禾, 李向军, 李吉宁. 二氧化钒辅助的可切换多功能超材料结构[J]. 中国光学(中英文), 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195
引用本文: 严德贤, 陈欣怡, 封覃银, 陆紫君, 张禾, 李向军, 李吉宁. 二氧化钒辅助的可切换多功能超材料结构[J]. 中国光学(中英文), 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195
YAN De-xian, CHEN Xin-yi, FENG Qin-yin, LU Zi-jun, ZHANG He, LI Xiang-jun, LI Ji-ning. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195
Citation: YAN De-xian, CHEN Xin-yi, FENG Qin-yin, LU Zi-jun, ZHANG He, LI Xiang-jun, LI Ji-ning. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195

二氧化钒辅助的可切换多功能超材料结构

基金项目: 国家级大学生创新创业训练计划资助项目(No. 202110356012);国家自然科学基金(No. 62001444)
详细信息
    作者简介:

    严德贤(1991—),男,甘肃武威人,副教授,博士后,主要从事太赫兹微波技术及器件。E-mail:yandexian1991@163.com

    陈欣怡(1999—),女,浙江温州人,硕士研究生,就读于中国计量大学电子信息工程专业。E-mail:chenxinyi299088@163.com

  • 中图分类号: TP394.1;TH691.9

A vanadium dioxide-assisted switchable multifunctional metamaterial structure

Funds: Supported by the National Project of Inovation and Entrepreneurship Training for Undergraduates (No. 202110356012); National Natural Science Foundation of China (No. 62001444)
  • 摘要:

    本文提出了一种基于二氧化钒(VO2)相变特性的开口谐振环结构多功能超材料器件。该器件由VO2填充的开口谐振环和中心放置十字的顶层、聚酰亚胺(PI)介质层和金属基底构成。VO2在绝缘态时,可以实现交叉极化转换功能,在0.48~0.87 THz范围内,偏振转换率大于90%。当VO2为金属态时,该器件能够实现双频吸收和高灵敏度传感功能。在1.64 THz和2.15 THz频率处的吸收率大于88%。通过改变样品材料的折射率,两个频率点处的传感灵敏度分别约为25.6 GHz/RIU和159 GHz/RIU,品质因子Q分别为71.34和23.12。所提出的超材料多功能器件具有结构简单、可切换功能和高效率极化转换等特性,在未来太赫兹通信、成像等领域都有潜在的应用价值。

     

  • 图 1  所提出的多功能超材料器件的结构示意图。(a)三维视图;(b)俯视图;(c)侧视图

    Figure 1.  Structrual diagram of the proposed multifunctional metamaterial device. (a) 3D schematic; (b) top view; (c) side view

    图 2  仿真得到的(a)反射系数和(b)不同偏振入射的PCR

    Figure 2.  (a) Reflection coefficients and (b) PCR for different polarized incident terahertz wave through simulation

    图 3  当VO2处于绝缘态时,结构参数(a)中心十字长边长b;(b)介质厚度Z3以及(c)开口谐振环外半径R1对偏振转换率的影响

    Figure 3.  Effects of structural parameters (a) b; (b) Z3 and (c) R1 on the PCR when the VO2 is in the insulating state

    图 4  VO2处于金属态时,所设计的超材料结构的吸收特性。(a)反射系数和吸收特性;(b)相对阻抗的实部和虚部

    Figure 4.  Absorption properties of the designed structure when VO2 is in the metallic state. (a) Reflection coefficient and absorption properties; (b) real and imaginary parts of relative impedance

    图 5  吸收器单元结构参数(a)中心十字长边长b;(b)介质层厚度Z3;(c)开口谐振环半径R1对太赫兹吸收率的影响

    Figure 5.  Effects of structural parameters (a) b; (b) Z3 and (c) R1 on the absorption characteristics

    图 6  顶层微结构在谐振频率(a)1.64 THz和(b)2.15 THz处的电场分布

    Figure 6.  Electric field distributions of the top microstructure at resonant frequencies of (a) 1.64 THz and (b) 2.15 THz

    图 7  不同入射角的超材料结构吸收特性。(a)TE偏振入射;(b)TM偏振入射

    Figure 7.  Absorption properties of metamaterial structure at different incident angles. (a) TE polarized incidence; (b) TM polarized incidence

    图 8  吸收器用作传感器时的性能分析。(a)吸收特性随待测样品折射率的变化情况;(b)1.64 THz频率处的传感特性;(c)2.15 THz频率处的传感特性

    Figure 8.  Performance analysis of the absorber when it is used as a sensor. (a) The variation of absorption with the refractive index of the sample; (b) the sensing characteristics at the frequency of 1.64 THz; (c) the sensing characteristics at the frequency of 2.15 THz

  • [1] 蔡禾, 郭雪娇, 和挺, 等. 太赫兹技术及其应用研究进展[J]. 中国光学与应用光学,2010,3(3):209-222.

    CAI H, GUO X J, HE T, et al. Terahertz wave and its new applications[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(3): 209-222. (in Chinese)
    [2] 曹丙花, 张宇盟, 范孟豹, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学,2022,15(3):405-417. doi: 10.37188/CO.2021-0198

    CAO B H, ZHANG Y M, FAN M B, et al. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. (in Chinese) doi: 10.37188/CO.2021-0198
    [3] YAN D X, WANG Y, QIU Y, et al. A review: the functional materials-assisted terahertz metamaterial absorbers and polarization converters[J]. Photonics, 2022, 9(5): 335. doi: 10.3390/photonics9050335
    [4] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947): 1518-1521. doi: 10.1126/science.1176580
    [5] 张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学,2014,7(3):349-364.

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [6] XU SH T, FAN F, WANG Y H, et al. Intensity-tunable terahertz bandpass filters based on liquid crystal integrated metamaterials[J]. Applied Optics, 2021, 60(30): 9530-9534. doi: 10.1364/AO.439400
    [7] LIU W W, XU J SH, SONG ZH Y. Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide[J]. Optics Express, 2021, 29(15): 23331-23340. doi: 10.1364/OE.433364
    [8] HUANG CH CH, ZHANG Y G, LIANG L J, et al. Perovskite-based multi-dimension THz modulation of EIT-like metamaterials[J]. Optik, 2022, 262: 169348. doi: 10.1016/j.ijleo.2022.169348
    [9] ZHANG H Y, YANG CH H, LIU M, et al. Dual-function tuneable asymmetric transmission and polarization converter in terahertz region[J]. Results in Physics, 2021, 25: 104242. doi: 10.1016/j.rinp.2021.104242
    [10] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [11] WU X L, ZHENG Y, LUO Y, et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Physical Chemistry Chemical Physics, 2021, 23(47): 26864-26873. doi: 10.1039/D1CP04568G
    [12] 黄成成, 张永刚, 梁兰菊, 等. 窄/宽带可切换的石墨烯-二氧化钒复合结构太赫兹吸波器[J]. 光学学报,2022,42(19):1916001. doi: 10.3788/AOS202242.1916001

    HUANG CH CH, ZAHNG Y G, LIANG L J, et al. Narrow/broad band switchable Terahertz absorber based on graphene and vanadium dioxide composite structure[J]. Acta Optica Sinica, 2022, 42(19): 1916001. (in Chinese) doi: 10.3788/AOS202242.1916001
    [13] 李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi: 10.37188/CO.2020-0171

    LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese) doi: 10.37188/CO.2020-0171
    [14] 冀允允, 范飞, 于建平, 等. 太赫兹液晶可调谐功能器件[J]. 中国激光,2019,46(6):0614006. doi: 10.3788/CJL201946.0614006

    JI Y Y, FAN F, YU J P, et al. Terahertz tunable devices based on liquid crystal[J]. Chinese Journal of Lasers, 2019, 46(6): 0614006. (in Chinese) doi: 10.3788/CJL201946.0614006
    [15] 曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080

    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    [16] CHENG J R, FAN F, CHANG SH J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398. doi: 10.3390/nano9030398
    [17] 李靖豪, 杨琬琛, 周晨昱, 等. 二氧化钒的相变调控特性及可重构超表面天线应用研究[J]. 无线电工程,2022,52(2):317-325. doi: 10.3969/j.issn.1003-3106.2022.02.024

    LI J H, YANG W CH, ZHOU CH Y, et al. Research on metal-insulating transition of vanadium dioxide and its applications on reconfigurable metasurface antenna[J]. Radio Engineering, 2022, 52(2): 317-325. (in Chinese) doi: 10.3969/j.issn.1003-3106.2022.02.024
    [18] LIU M, KANG W J, ZHANG Y L, et al. Dynamically controlled terahertz coherent absorber engineered with VO2-integrated Dirac semimetal metamaterials[J]. Optics Communications, 2022, 503: 127443. doi: 10.1016/j.optcom.2021.127443
    [19] QIAO Q, WANG Y K, YANG G F, et al. Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array[J]. Optical Materials Express, 2021, 11(9): 2952-2965. doi: 10.1364/OME.436327
    [20] YANG CH H, GAO Q G, DAI L L, et al. Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide[J]. Optical Materials Express, 2020, 10(9): 2289-2303. doi: 10.1364/OME.404244
    [21] 付亚男, 张新群, 赵国忠, 等. 基于谐振环的太赫兹宽带偏振转换器件研究[J]. 物理学报,2017,66(18):180701. doi: 10.7498/aps.66.180701

    FU Y N, ZHANG X Q, ZHAO G ZH, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 180701. (in Chinese) doi: 10.7498/aps.66.180701
    [22] HE ZH H, LI L Q, MA H Q, et al. Graphene-based metasurface sensing applications in terahertz band[J]. Results in Physics, 2021, 21: 103795. doi: 10.1016/j.rinp.2020.103795
    [23] YAN D X, FENG Q Y, YUAN Z W, et al. Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface[J]. Chinese Physics B, 2022, 31(1): 014211. doi: 10.1088/1674-1056/ac05a7
    [24] 高鹏, 陈聪, 刘海, 等. 基于二氧化钒相变的可调谐超材料吸收器设计[J]. 量子光学学报,2022,28(1):37-45.

    GAO P, CHEN C, LIU H, et al. Design of adjustable metamaterial absorber based on the phase transition of vanadium dioxide[J]. Journal of Quantum Optics, 2022, 28(1): 37-45. (in Chinese)
    [25] BAN SH H, MENG H Y, ZHAI X, et al. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide[J]. Journal of Physics D:Applied Physics, 2021, 54(17): 174001. doi: 10.1088/1361-6463/abdd65
    [26] 封覃银, 裘国华, 严德贤, 等. 基于二氧化钒宽、窄带可切换的双功能超材料吸收器研究[J]. 中国光学,2022,15(2):388-404.

    FENG Q Y, QIU G H, YAN D X, et al. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 388-404. (in Chinese)
    [27] QIU Y, YAN D X, FENG Q Y, et al. Vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Optics Express, 2022, 30(15): 26544-26556. doi: 10.1364/OE.465062
    [28] FENG Q Y, YAN D X, LI X J, et al. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials[J]. Applied Optics, 2022, 61(15): 4336-4343. doi: 10.1364/AO.459406
    [29] FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates[J]. Scientific Reports, 2018, 8(1): 17272. doi: 10.1038/s41598-018-35515-z
  • 加载中
图(8)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  364
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-10-19
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回