留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bandwidth-tunable terahertz metamaterial half-wave plate component

LV Ting-ting FU Tian-shu LIU Dong-ming SHI Jin-hui

吕婷婷, 付天舒, 刘东明, 史金辉. 带宽可调谐的太赫兹超构材料半波片器件[J]. 中国光学(中英文), 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198
引用本文: 吕婷婷, 付天舒, 刘东明, 史金辉. 带宽可调谐的太赫兹超构材料半波片器件[J]. 中国光学(中英文), 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198
LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198
Citation: LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198

带宽可调谐的太赫兹超构材料半波片器件

详细信息
  • 中图分类号: TP394.1; TH691.9

Bandwidth-tunable terahertz metamaterial half-wave plate component

doi: 10.37188/CO.2022-0198
Funds: Supported by National Natural Science Foundation of China (No. U1931121)
More Information
    Author Bio:

    LV Ting-ting (1989—), female, Tangyuan city, Heilongjiang province, lecturer, received her PhD degree from School of Physics and Optoelectronic Engineering, Harbin Engineering University in 2022. She is mainly engaged in the research of structural design and application of tunable metamaterials. E-mail: oktingting521@126.com

    SHI Jin-hui (1979—), male, Zhaodong city, Heilongjiang province, professor and doctoral supervisor, received his PhD degree in materials science from Harbin Engineering University in 2007. He is mainly engaged in the application research of metamaterials. E-mail: shijinhui@hrbeu.edu.cn

    Corresponding author: oktingting521@126.comshijinhui@hrbeu.edu.cn
  • 摘要:

    基于二氧化钒(vanadium dioxide, VO2)的相变原理,提出了一种“树叶型”复合超构材料,能够实现带宽可调谐的半波片功能。VO2薄膜为绝缘态时,复合超构材料可以看作是空芯“树叶型”金属结构,能够实现双频带的半波片功能。在1.01~1.17 THz和1.47~1.95 THz 频带范围内能够将y偏振光转换成x偏振光,偏振转换率大于0.9且平均相对带宽为26%。VO2 薄膜为金属态时,实芯“树叶型”金属结构的超构材料在1.13~2.80 THz范围内能够实现反射型的宽频带半波片功能,相对带宽为85%。利用瞬时表面电流分布和电场理论详细地分析了带宽可调谐半波片器件的工作原理。本文所提出的“树叶型”复合超构材料半波片器件在太赫兹成像、传感和偏振探测等领域具有潜在的应用前景。

     

  • 图 1  “树叶型”复合超构材料的工作原理和结构示意图。(a)半波片工作原理图(偏振旋转角φ和倾斜入射角θ已在插图中标注);(b)基本单元的结构参数图

    Figure 1.  Operation principle of “leaf-type” hybrid metamaterial and it’s structural diagram. (a) Schematic diagram of half-wave plate (The polarization angle φ and incident angle θ are marked in the inset); (b) structural parameters of a unit cell in the proposed metamaterial

    图 2  VO2薄膜为不同相态时“树叶型”复合超构材料的反射偏振特性。(a)和(b)共偏振和正交偏振反射系数;(c)和(d)偏振转换率

    Figure 2.  Reflection polarization properties of “leaf-type” hybrid metamaterial when the VO2 film is in different phase states. (a) and (b) Reflection coefficients of co- and cross-polarization; (c) and (d) Polarization Conversion Ratio (PCR)

    图 3  y偏振光激发下6个特定频率处的偏振椭圆

    Figure 3.  Polarization ellipses of reflected lights at the six specific frequencies under y-polarized illumination.

    图 4  VO2薄膜为不同相态时,垂直入射的u偏振和v偏振激发“树叶型”复合超构材料的反射系数和相位频谱图。(a)和(b)反射系数ruurvvruvrvu;(c)和(d)φuuφvv及其相位差Δφu偏振和v偏振如插图所示)

    Figure 4.  Reflection coefficients and phases of the hybrid metamaterial for normal u and v polarization incidences when the VO2 film is in different phase states. (a) and (b) Reflection coefficients ruu , rvv and ruv , rvu; (c) and (d) reflection phases φuu , φvv and phase difference Δφ (normal u and v polarization incidences, as depicted by the inset)

    图 5  关键频率处的瞬时表面电流分布图。VO2为绝缘态时,(a)1.22 THz、(b)1.68 THz、(c)2.10 THz、(d)2.61 THz;VO2为金属态时,(e)1.22 THz、(f)1.95 THz、(g)2.10 THz、(h)2.71 THz

    Figure 5.  Instantaneous surface current distributions at critical frequencies. (a) 1.22 THz, (b) 1.68 THz, (c) 2.10 THz, (d) 2.61 THz for VO2 film in the complete insulating state; (e) 1.22 THz, (f) 1.95 THz, (g) 2.10 THz, (h) 2.71 THz for VO2 film in the complete metallic state

    图 6  VO2薄膜为绝缘态和金属态时,带宽可调谐半波片器件随入射角度θ的变化规律。(a)和(b)rxy;(c)和(d)PCR

    Figure 6.  Incident angle dependence of bandwidth-tunable half-wave plate components when VO2 film is in the complete insulating and metallic states. (a) and (b) rxy; (c) and (d) PCR

    图 7  VO2薄膜为绝缘态和金属态时带宽可调谐半波片器件随偏振角度的变化规律。(a)和(b)rxy;(c)和(d)PCR

    Figure 7.  Polarization angle dependence of bandwidth-tunable half-wave plate components when VO2 film is in the complete insulating and metallic states. (a) and (b) rxy; (c) and (d) PCR

  • [1] KLEINER R. Filling the terahertz gap[J]. Science, 2007, 318(5854): 1254-1255. doi: 10.1126/science.1151373
    [2] LI J T, LI J, ZHENG C L, et al. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces[J]. Applied Physics Letters, 2021, 118(22): 221110. doi: 10.1063/5.0053236
    [3] LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science &Applications, 2016, 5(5): e16076.
    [4] LI J, ZHENG CH L, WANG G C, et al. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567-573. doi: 10.1364/PRJ.415547
    [5] WU SH, ZHANG ZH, ZHANG Y, et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes[J]. Physical Review Letters, 2013, 110(20): 207401. doi: 10.1103/PhysRevLett.110.207401
    [6] HAO J M, YUAN Y, RAN L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
    [7] ZHELUDEV N I, PLUM E, FEDOTOV V A. Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength[J]. Applied Physics Letters, 2011, 99(17): 171915. doi: 10.1063/1.3656286
    [8] MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. doi: 10.1021/acsnano.8b03569
    [9] WANG F, LIU X CH, WANG ZH P, et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J]. Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese) doi: 10.11990/jheu.201501046
    [10] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
    [11] LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
    [12] LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. (in Chinese) doi: 10.37188/CO.2021-0108
    [13] FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [14] LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi: 10.37188/CO.2021-0096
    [15] GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
    [16] CHENG Y ZH, WITHAYACHUMNANKUL W, UPADHYAY A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111. doi: 10.1063/1.4901272
    [17] CONG L Q, CAO W, ZHANG X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107. doi: 10.1063/1.4826536
    [18] HUANG Y Y, YAO Z H, HU F R, et al. Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J]. Carbon, 2017, 119: 305-313. doi: 10.1016/j.carbon.2017.04.037
    [19] ZHANG Y, FENG Y J, ZHAO J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J]. Carbon, 2020, 163: 244-252. doi: 10.1016/j.carbon.2020.03.001
    [20] SHEN N H, MASSAOUTI M, GOKKAVAS M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403. doi: 10.1103/PhysRevLett.106.037403
    [21] LV T T, ZHU Z, SHI J H, et al. Optically controlled background-free terahertz switching in chiral metamaterial[J]. Optics Letters, 2014, 39(10): 3066-3069. doi: 10.1364/OL.39.003066
    [22] WANG T L, ZHANG H Y, ZHANG Y, et al. Tunable bifunctional terahertz metamaterial device based on dirac semimetals and vanadium dioxide[J]. Optics Express, 2020, 28(12): 17434-17448. doi: 10.1364/OE.394784
    [23] SHU F ZH, WANG J N, PENG R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide[J]. Laser &Photonics Reviews, 2021, 15(10): 2100155.
    [24] ZHU W, YANG R SH, FAN Y CH, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25): 12054-12061. doi: 10.1039/C8NR02587H
    [25] LI Z L, TANG H W, XU W X, et al. Coding metasurface design for terahertz beam shaping[J]. Chinese Journal of Radio Science, 2021, 36(6): 932-937. (in Chinese) doi: 10.12265/j.cjors.2021121
    [26] ZHENG X X, XIAO ZH Y, LING X Y. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film[J]. Plasmonics, 2018, 13(1): 287-291. doi: 10.1007/s11468-017-0512-6
    [27] DING F, ZHONG SH M, BOZHEVOLNYI S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials, 2018, 6(9): 1701204. doi: 10.1002/adom.201701204
    [28] LUO J, SHI X ZH, LUO X Q, et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 2020, 28(21): 30861-30870. doi: 10.1364/OE.406006
    [29] YANG ZH H, JIANG M ZH, LIU Y CH, et al. Tunable-bandwidth terahertz polarization converter based on a vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 2021, 48(17): 1714001. (in Chinese) doi: 10.3788/CJL202148.1714001
    [30] LV T T, CHEN X Y, DONG G H, et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial[J]. Nanophotonics, 2020, 9(10): 3235-3242. doi: 10.1515/nanoph-2019-0507
    [31] LIU M, XU Q, CHEN X Y, et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J]. Scientific Reports, 2019, 9(1): 4097. doi: 10.1038/s41598-019-40791-4
    [32] 周高潮. 电磁偏振转换及主动调控超材料器件[D]. 南京: 南京大学, 2018: 57-58.

    ZHOU G CH. Electromagnetic polarization-converting and active metamaterials[D]. Nanjing: Nanjing University, 2018: 57-58. (in Chinese)
    [33] ZHANG C H, ZHOU G CH, WU J B, et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials[J]. Physical Review Applied, 2019, 11(5): 054016. doi: 10.1103/PhysRevApplied.11.054016
    [34] ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9(1): 76.
  • 加载中
图(7)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  255
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 修回日期:  2022-11-02
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回