留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自由曲面的聚焦型太阳模拟器设计

魏秀东 李柏霖 赵宇航 汤建方 张继 黄勇焕 许英朝

魏秀东, 李柏霖, 赵宇航, 汤建方, 张继, 黄勇焕, 许英朝. 基于自由曲面的聚焦型太阳模拟器设计[J]. 中国光学(中英文), 2023, 16(6): 1356-1364. doi: 10.37188/CO.2022-0207
引用本文: 魏秀东, 李柏霖, 赵宇航, 汤建方, 张继, 黄勇焕, 许英朝. 基于自由曲面的聚焦型太阳模拟器设计[J]. 中国光学(中英文), 2023, 16(6): 1356-1364. doi: 10.37188/CO.2022-0207
WEI Xiu-dong, LI Bai-lin, ZHAO Yu-hang, TANG Jian-fang, ZHANG Ji, HUANG Yong-huan, XU Ying-chao. Design of focusing solar simulator based on free-form surface[J]. Chinese Optics, 2023, 16(6): 1356-1364. doi: 10.37188/CO.2022-0207
Citation: WEI Xiu-dong, LI Bai-lin, ZHAO Yu-hang, TANG Jian-fang, ZHANG Ji, HUANG Yong-huan, XU Ying-chao. Design of focusing solar simulator based on free-form surface[J]. Chinese Optics, 2023, 16(6): 1356-1364. doi: 10.37188/CO.2022-0207

基于自由曲面的聚焦型太阳模拟器设计

doi: 10.37188/CO.2022-0207
基金项目: 福建省自然科学基金面上项目(No. 2019J01876)
详细信息
    作者简介:

    魏秀东(1979—),男,河北河间人,博士,副研究员,硕士生导师,主要从事非成像光学设计、光学测量、光学面形检测、高强度太阳辐射模拟系统设计及研制方面的研究。E-mail:weixiudong211@163.com

    李柏霖(1998—),男,吉林大安人,长春理工大学硕士研究生,主要从事非成像光学设计、高强度太阳辐射模拟系统设计设计及研制方面的研究。E-mail:3124265594@qq.com

  • 中图分类号: O439

Design of focusing solar simulator based on free-form surface

Funds: Supported by Natural Science Foundation of Fujian Province (No. 2019J01876)
More Information
  • 摘要:

    聚焦型太阳模拟器可以获得高倍汇聚的太阳辐射光斑,在太阳能热发电及热化学研究领域具有重要应用。为了获得均匀的太阳辐射光斑,提出了基于非成像光学的自由曲面聚光镜设计方法。详细阐述了设计原理与具体方法。设计了自由曲面聚光镜,并将其与包容角相同的非共轴椭球聚光镜进行对比。通过仿真分析验证了设计方法的正确性。仿真结果表明:使用额定功率为6 kW的氙灯作为光源时,自由曲面聚光镜构成的单灯太阳模拟器可以在直径为60 mm的目标面内提供平均辐照度为274.4 kW/m2的光斑,与非共轴椭球太阳模拟器相比,光斑不均匀度从18.28%下降到5.69%;七灯太阳模拟器可以产生平均辐照度为1.65 MW/m2的光斑,光斑不均匀度从13.19%下降到5.79%。

     

  • 图 1  短弧氙灯结构示意图

    Figure 1.  Schematic diagram of the structure of a short-arc xenon lamp

    图 2  氙灯配光曲线

    Figure 2.  Light distribution for a xenon lamp

    图 3  光源与目标面映射关系

    Figure 3.  The mapping relationship between the source and the target

    图 4  相对强度分布

    Figure 4.  Relative intensity distribution

    图 5  聚光镜示意图

    Figure 5.  Schematic diagram of the condenser

    图 6  自由曲面聚光镜母线相邻迭代点计算

    Figure 6.  Calculation of adjacent iteration points of the freeform condenser busbars

    图 7  采用点光源的自由曲面聚光镜仿真结果

    Figure 7.  Simulation results of free-form condenser with point source

    图 8  采用扩展光源自由曲面聚光镜仿真结果

    Figure 8.  Simulation results of free-form condenser with extended light source

    图 9  直径为120 mm目标区域的辐照度分布

    Figure 9.  Irradiance distribution in target area with diameter of 120 mm

    图 10  直径为60 mm目标区域的辐照度分布

    Figure 10.  Irradiance distribution in target area with diameter of 60 mm

    图 11  多灯太阳模拟器模型

    Figure 11.  Model of the multi-lamp solar simulators

    图 12  单个边缘聚光镜仿真结果

    Figure 12.  Simulation results of a single edge condenser

    图 13  多灯太阳模拟器在直径60 mm目标区域的辐照度分布

    Figure 13.  Irradiance distribution of a multi-lamp solar simulator in target area with diameter of 60 mm

  • [1] JIANG B SH, LOUGOU B G, ZHANG H, et al. Analysis of high-flux solar irradiation distribution characteristic for solar thermochemical energy storage application[J]. Applied Thermal Engineering, 2020, 181: 115900. doi: 10.1016/j.applthermaleng.2020.115900
    [2] LI J Y, HU J P, LIN M. A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112084. doi: 10.1016/j.rser.2022.112084
    [3] WANG J K, QIU Y, LI Q, et al. Design and experimental study of a 30 kWe adjustable solar simulator delivering high and uniform flux[J]. Applied Thermal Engineering, 2021, 195: 117215. doi: 10.1016/j.applthermaleng.2021.117215
    [4] POTTAS J, LI L F, HABIB M, et al. Optical alignment and radiative flux characterization of a multi-source high-flux solar simulator[J]. Solar Energy, 2022, 236: 434-444. doi: 10.1016/j.solener.2022.02.026
    [5] MILANESE M, COLANGELO G, DE RISI A. Development of a high-flux solar simulator for experimental testing of high-temperature applications[J]. Energies, 2021, 14(11): 3124. doi: 10.3390/en14113124
    [6] GILL R, BUSH E, HAUETER P, et al. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns[J]. Review of Scientific Instruments, 2015, 86(12): 125107. doi: 10.1063/1.4936976
    [7] CHU SH ZH, BAI F W, NIE F L, et al. Description and characterization of a 114-kWe high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2021, 143(1): 011001. doi: 10.1115/1.4047295
    [8] KRUEGER K R, DAVIDSON J H, LIPIŃSKI W. Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research[J]. Journal of Solar Energy Engineering, 2011, 133(1): 011013. doi: 10.1115/1.4003298
    [9] KRUEGER K R, LIPIŃSKI W, DAVIDSON J H. Operational performance of the university of minnesota 45 kWe high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2013, 135(4): 044501. doi: 10.1115/1.4023595
    [10] ZHU Q B, XUAN Y M, LIU X L, et al. A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping[J]. Applied Energy, 2020, 270: 115165. doi: 10.1016/j.apenergy.2020.115165
    [11] 刘洪波, 高雁, 王丽, 等. 高倍聚光太阳模拟器的设计[J]. 中国光学,2011,4(6):594-599.

    LIU H B, GAO Y, WANG L, et al. Design of high-flux solar simulator[J]. Chinese Optics, 2011, 4(6): 594-599. (in Chinese)
    [12] ZHU Q, XUAN Y, LIU X, et al. . Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing[J]. Applied Energy, 2020, 270: 115165.
    [13] XIAO J, WEI X D, GILABER R N, et al. Design and characterization of a high-flux non-coaxial concentrating solar simulator[J]. Applied Thermal Engineering, 2018, 145: 201-211. doi: 10.1016/j.applthermaleng.2018.09.050
    [14] 张燃. 大口径发散式同轴太阳模拟器及其关键技术研究[D]. 长春: 长春理工大学, 2019.

    ZHANG R. Research on a heavy caliber divergent coaxial solar simulator and its key technology[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese)
    [15] 程颖. 光学自由曲面设计方法及应用研究[D]. 天津: 天津大学, 2013.

    CHENG Y. Study on design and application of freeform optics[D]. Tianjin: Tianjin University, 2013. (in Chinese)
    [16] 顾国超. 基于数学法的自由曲面照明光学系统设计方法研究[D]. 长春: 中国科学院大学, 2019.

    GU G CH. Study on the design of freeform surface illumination system based on mathematical method[D]. Changchun: University of Chinese Academy of Sciences, 2019. (in Chinese)
    [17] 高玲, 张国玉, 苏拾, 等. 基于全光谱输出太阳模拟器氙灯光源的研究[J]. 长春理工大学学报(自然科学版),2012,35(2):82-84,92.

    GAO L, ZHANG G Y, SU SH, et al. Study on Xe-lamp sources of full spectrum solar simulators[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2012, 35(2): 82-84,92. (in Chinese)
    [18] 顾国超, 刘洪波, 陈家奇, 等. 基于Supporting-Ellipsoid方法的自由曲面构造[J]. 中国光学,2014,7(5):823-829.

    GU G CH, LIU H B, CHEN J Q, et al. Construction of freeform surface based on Supporting-Ellipsoid method[J]. Chinese Optics, 2014, 7(5): 823-829. (in Chinese)
    [19] 任兰旭, 魏秀东, 牛文达, 等. 非共轴椭球面聚光阵列式高焦比太阳模拟器[J]. 光学学报,2012,32(10):1022002. doi: 10.3788/AOS201232.1022002

    REN L X, WEI X D, NIU W D, et al. A high flux solar simulator based on an array of non-coaxial ellipsoidal reflector[J]. Acta Optica Sinica, 2012, 32(10): 1022002. (in Chinese) doi: 10.3788/AOS201232.1022002
    [20] SARWAR J, GEORGAKIS G, LACHANCE R, et al. Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar Energy, 2014, 100: 179-194. doi: 10.1016/j.solener.2013.12.008
    [21] PETRASCH J, CORAY P, MEIER A, et al. A novel 50kW 11, 000 suns high-flux solar simulator based on an array of xenon arc lamps[J]. Journal of Solar Energy Engineering, 2007, 129(4): 405-411. doi: 10.1115/1.2769701
    [22] 张赢, 丁红昌, 赵长福, 等. 基于多激光传感器装配的自由曲面法线找正方法研究[J]. 中国光学,2021,14(2):344-352. doi: 10.37188/CO.2020-0205

    ZHANG Y, DING H CH, ZHAO CH F, et al. The normal alignment method for freeform surfaces based on multiple laser sensor assembly[J]. Chinese Optics, 2021, 14(2): 344-352. (in Chinese) doi: 10.37188/CO.2020-0205
    [23] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi: 10.37188/CO.2021-0143
    [24] 张磊, 吴金灵, 刘仁虎, 等. 光学自由曲面自适应干涉检测研究新进展[J]. 中国光学,2021,14(2):227-244. doi: 10.37188/CO.2020-0126

    ZHANG L, WU J L, LIU R H, et al. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. (in Chinese) doi: 10.37188/CO.2020-0126
  • 加载中
图(13)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  163
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2022-10-26
  • 网络出版日期:  2023-04-17

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!