High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions
doi: 10.37188/CO.2022-0243
-
摘要:
利用半导体性单壁碳纳米管(SWCNT)的高吸收系数、优异的光电特性和高载流子迁移率等特点,本文构筑了基于半导体SWCNT(sc-SWCNT)/富勒烯(C60)异质结的透明全碳宽光谱的场效应晶体管光电探测器。该器件的大部分结构均由碳基材料组成,全碳异质结作为导电沟道材料,金属性SWCNT作为源漏电极,氧化石墨烯(GO)作为介质层,在可见光波段的透光率均高于80%。电学测试结果表明:该光电探测器表现出了较强的栅控能力,实现了从405~1064 nm的可见光-近红外宽光谱响应,在5 mW/cm2的940 nm激光照射下,该器件光电响应率可以达到18.55 A/W,比探测率达到5.35×1011 Jones,同时,表现出了优异的循环稳定性。
-
关键词:
- 单壁碳纳米管 /
- 富勒烯 /
- 全碳异质结 /
- 高透明度 /
- 场效应晶体管光电探测器
Abstract:Taking advantage of the high absorption coefficient, excellent photoelectric properties, and high carrier mobility of Single-Walled Carbon NanoTubes (SWCNTs), high-performance, transparent, all-carbon Field-Effect Transistor (FET) photodetector has been constructed with a high transmittance more than 80% in the visible light band, in which semiconducting SWCNT (sc-SWCNT)/fullerene (C60) heterojunctions as the channel materials, patterned metallic SWCNT film as source/drain electrodes, graphene oxide (GO) as the dielectric layer, and Indium Tin Oxide (ITO) as a transparent gate electrode. The electrical test results show that the photodetector exhibits a strong gate-tunable characteristics, and achieves a broadband spectral response from 405 to 1064 nm in the visible-near infrared spectral region. Under 940 nm illumination with a light density of 5 mW/cm2, the maximum photoelectric responsivity of 18.55 A/W and a specific detectivity of 5.35×1011 Jones can be achieved.
-
-
[1] Richter M, T Heumüller, Matt G J, et al. Carbon photodetectors: The versatility of carbon allotropes[J]. Advanced Energy Materials, 2016, 7(10): 1601574. [2] Murata T, Asahi S, Sanguinetti S, et al. Infrared photodetector sensitized by InAs quantum dots embedded near an Al0.3Ga0.7As/GaAs heterointerface[J]. Scientific Reports, 2020, 10(1): 1-11. doi: 10.1038/s41598-019-56847-4 [3] Xing J, Zhao K, Lu H B, et al. Visible-blind, ultraviolet-sensitive photodetector based on SrTiO3 single crystal[J]. Optics Letters, 2007, 32(17): 2526-2528. doi: 10.1364/OL.32.002526 [4] Hirsch A. The era of carbon allotropes[J]. Nature Materials, 2010, 9: 868-871. doi: 10.1038/nmat2885 [5] Dinadayalane T C, Leszczynski J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene[J]. Structural Chemistry, 2010, 21(6): 1155-1169. doi: 10.1007/s11224-010-9670-2 [6] Premkumar T, Mezzenga R, Geckeler K E. Carbon nanotubes in the liquid phase: Addressing the issue of dispersion[J]. Small, 2012, 8(9): 1299-1313. doi: 10.1002/smll.201101786 [7] Cai B F, Yin H, Huo T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi: 10.1039/C9TC06586E [8] Huo T T, Yin H, Zhou D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(41): 15532-15539. [9] Ramuz M P, Vosgueritchian M, Wei P, et al. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells[J]. ACS Nano, 2012, 6(11): 10384-10395. doi: 10.1021/nn304410w [10] Baughman R H, Zakhidov A A, Heer W. Carbon nanotubes-The route toward applications[J]. Science, 2002, 297(5582): 787-792. doi: 10.1126/science.1060928 [11] Schnorr J M, Swager T M. Emerging applications of carbon nanotubes[J]. Chemistry of Materials, 2011, 23(3): 646-657. doi: 10.1021/cm102406h [12] Chichak K S, Star A, Altoé M V P, et al. Single‐walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry[J]. Small, 2005, 1(4): 452-461. doi: 10.1002/smll.200400070 [13] D'Souza F, Chitta R, Sandanayaka A S D, et al. Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer[J]. Journal of the American Chemical Society, 2007, 129(51): 15865-15871. doi: 10.1021/ja073773x [14] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material-based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807 [15] Zeng Q, Wang S, Yang L, et al. Carbon nanotube arrays based high-performance infrared photodetector[J]. Optical Materials Express, 2012, 2(6): 839-848. doi: 10.1364/OME.2.000839 [16] Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi: 10.1002/adom.201500529 [17] Saran R, Curry R J. Solution processable 1D fullerene C60 crystals for visible spectrum photodetectors[J]. Small, 2018, 14(11): 1703624. doi: 10.1002/smll.201703624 [18] Yin H, Zhang L, Zhu M, et al. High-Performance Visible–Near-Infrared Single-Walled Carbon Nanotube Photodetectors via Interfacial Charge-Transfer-Induced Improvement by Surface Doping[J]. ACS Applied Materials &Interfaces, 2022, 14(38): 43628-43636. [19] Cheng S H, Weng T M, Lu M L, et al. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two-dimensional graphene[J]. Scientific Reports, 2013, 3(1): 1-7. [20] Park S, Kim S J, Nam J H, et al. Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single‐Walled Carbon Nanotube/C60 Phototransistor[J]. Advanced materials, 2015, 27(4): 759-765. doi: 10.1002/adma.201404544 [21] Yu X, Dong Z, Yang J K W, et al. Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C60 hybrid nanostructure[J]. Optica, 2016, 3(9): 979-984. doi: 10.1364/OPTICA.3.000979 [22] Zhou Z, Ding Y, Ma H, et al. Bilayer nanocarbon heterojunction for full-solution processed flexible all-carbon visible photodetector[J]. APL Materials, 2019, 7(3): 031501. doi: 10.1063/1.5054774 [23] Itkis M E, Borondics F, Yu A, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films[J]. Science, 2006, 312(5772): 413-416. doi: 10.1126/science.1125695 [24] Huo T, Zhang D, Shi X, et al. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373. (in Chinese) [25] Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409(2): 47-99. doi: 10.1016/j.physrep.2004.10.006 [26] Farhat H, Son H, Samsonidze G G, et al. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly[J]. Physical Review Letters, 2007, 99(14): 145506. doi: 10.1103/PhysRevLett.99.145506 [27] Das A, Sood A K, Govindaraj A, et al. Doping in carbon nanotubes probed by Raman and transport measurements[J]. Physical Review Letters, 2007, 99(13): 136803. doi: 10.1103/PhysRevLett.99.136803 [28] Hatting B, Heeg S, Ataka K, et al. Fermi energy shift in deposited metallic nanotubes: A Raman scattering study[J]. Physical Review B, 2013, 87(16): 165442. doi: 10.1103/PhysRevB.87.165442 [29] Wroblewska A, Gordeev G, Duzynska A, et al. Doping and plasmonic Raman enhancement in hybrid single walled carbon nanotubes films with embedded gold nanoparticles[J]. Carbon, 2021, 179: 531-540. doi: 10.1016/j.carbon.2021.04.079 [30] Wang F, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons[J]. Science, 2005, 308(5723): 838-841. doi: 10.1126/science.1110265 [31] Maciel I O, Anderson N, Pimenta M A, et al. Electron and phonon renormalization near charged defects in carbon nanotubes[J]. Nature Materials, 2008, 7(11): 878-883. doi: 10.1038/nmat2296 [32] Das A, Sood A K. Renormalization of the phonon spectrum in semiconducting single-walled carbon nanotubes studied by Raman spectroscopy[J]. Physical Review B, 2009, 79(23): 235429. doi: 10.1103/PhysRevB.79.235429