留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轴承和柔性铰链的布拉格光纤光栅加速度计

宋颖 张浩然 李剑芝 申博豪 刘占剑

宋颖, 张浩然, 李剑芝, 申博豪, 刘占剑. 基于轴承和柔性铰链的布拉格光纤光栅加速度计[J]. 中国光学(中英文), 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252
引用本文: 宋颖, 张浩然, 李剑芝, 申博豪, 刘占剑. 基于轴承和柔性铰链的布拉格光纤光栅加速度计[J]. 中国光学(中英文), 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252
SONG Ying, ZHANG Hao-ran, LI Jian-zhi, SHEN Bo-hao, LIU Zhan-jian. Fiber bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252
Citation: SONG Ying, ZHANG Hao-ran, LI Jian-zhi, SHEN Bo-hao, LIU Zhan-jian. Fiber bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252

基于轴承和柔性铰链的布拉格光纤光栅加速度计

doi: 10.37188/CO.2022-0252
基金项目: 国家重点研发计划(No. 2021YFB2601000);中央引导地方科技发展基金(No. 226Z0801G,No. 216Z3901G)
详细信息
    作者简介:

    宋 颖(1981—),女,河北衡水人,教授,博士生导师,2010年于北京交通大学获得博士学位,现为石家庄铁道大学教授,主要从事交通工程结构健康监测、智能传感测试技术等方面的研究工作。E-mail:songy@stdu.edu.cn

    李剑芝(1978—),女,河北定州人,教授,博士生导师,2009 年于北京交通大学获得博士学位,现为石家庄铁道大学大型结构健康诊断与控制研究所教授,主要从事光纤传感技术和结构健康监测等研究工作。E-mail:lijianzhigang@163.com

  • 中图分类号: TN253

Fiber bragg grating accelerometer based on flexure hinge and bearing

Funds: Supported by National Key Research and Development Program (No. 2021YFB2601000); Central Leading Local Science and Technology Development Fund (No. 226Z0801G, No. 216Z3901G)
More Information
  • 摘要:

    为实现中高频振动信号的测量,本文设计了一种基于轴承和柔性铰链结构的光纤布拉格光栅加速度传感器。首先,基于理论力学模型推导出其固有频率、灵敏度与结构参数的数学模型,然后进行结构优化设计,并制作了传感器实物。在此基础上,对所设计传感器动态特性进行有限元仿真和实验测试。研究结果表明:传感器工作频率为10~1200 Hz,加速度灵敏度达17.25 pm/g,测量误差小于0.3 g,线性度大于0.99,重复性误差为2.33%,且能实现温度补偿。

     

  • 图 1  FBG传感器结构示意图

    Figure 1.  Schematic diagram of the FBG structure

    图 2  工作原理示意图

    Figure 2.  Diagram of the working principle

    图 3  FBG加速度传感器结构参数对固有频率和灵敏度的影响

    Figure 3.  The influence of structural parameters of FBG accelerometer on natural frequency and sensitivity

    图 4  传感器一阶振型图

    Figure 4.  Characteristic frequency of sensor

    图 5  频响特性曲线仿真结果

    Figure 5.  Simulation results of frequency response characteristics

    图 6  正弦激励下光纤光栅波长变化量(500 Hz)

    Figure 6.  Wavelength shift of FBG under different sinusoidal excitations (500 Hz)

    图 7  FBG加速度传感器动态测试原理图

    Figure 7.  Schematic diagram of dynamic test for FBG accelerometer

    图 8  试验现场及传感器实物图

    Figure 8.  Physical sensor and experimental site

    图 9  幅频特性曲线

    Figure 9.  Amplitude frequency characteristic curve

    图 10  不同振动加速度信号下FBG1、FBG2灵敏度标定曲线。(a)100 Hz;(b)300 Hz;(c)600 Hz;(d)1 000 Hz

    Figure 10.  Sensitivity calibration curves at different vibration acceleration signals. (a) 100 Hz; (b) 300 Hz; (c) 600 Hz; (d)1 000 Hz

    图 11  FBG加速度传感器总灵敏度标定曲线

    Figure 11.  Total sensitivity calibration curves of FBG acceleration sensor

    图 12  不同频率、加速度下FBG波长时程图。(a)100 Hz,40 g;(b)300 Hz,40 g;(c)600 Hz,10 g;(d)1 200 Hz,10 g

    Figure 12.  Time history curves of FBG wavelength caused by different vibration acceleration signals. (a) 100 Hz, 40 g; (b) 300 Hz, 40 g; (c) 600 Hz, 10 g; (d)1 200 Hz, 10 g

    图 13  不同频率振动激励下FBG波长变化频谱图

    Figure 13.  FBG wavelength spectrogram under different frequency vibration excitations

    图 14  FBG加速度传感器横向灵敏度

    Figure 14.  Transverse sensitivity curves of FBG acceleration sensor

    表  1  加速度传感器尺寸参数

    Table  1.   Dimensional parameters of FBG accelerometer

    参数含义
    Pe有效弹光系数0.22
    λ1FBG1中心波长/nm1540
    λ2FBG2中心波长/nm1550
    R柔性铰链切割半径/mm2.5
    t柔性铰链最小厚度/mm2
    i柔性铰链宽度(y方向长度)/mm6
    b质量块长/mm4
    c质量块宽/mm35
    h质量块高/mm15
    L质量块质心到延伸杆端部距离/mm20
    E304不锈钢弹性模量/GPa210
    Af光纤横截面积/m21.23×10−8
    Ef光纤弹性模量/GPa72
    下载: 导出CSV

    表  2  不同加速度下光栅波长变化量

    Table  2.   Wavelength shifts of FBG at different accelerations

    加速度/g波长变化量/pm标准差/pm
    第一次第二次第三次平均值
    242.0142.3744.7343.041.48
    6130.60130.36134.71131.892.45
    10213.68217.52217.53216.252.22
    14301.16295.53300.51299.073.08
    18371.33378.76385.35378.487.01
    22460.05457.72462.66460.142.47
    26538.20538.20527.20534.536.35
    30632.40640.91626.22633.187.38
    下载: 导出CSV

    表  3  FBG加速度传感器的结构性能对比

    Table  3.   Performance comparison of FBG accelerometer designed in this paper and reported in other Refs.

    文献结构固有频率/Hz平坦区灵敏度/(pm·g−1)温度补偿
    WU[14]双悬臂梁86585000 Hz以下0.44
    WANG[15]钢管-质量块弹性结构38061200 Hz以下4.01
    LUO[19]对称双柔性铰链89050~600 Hz41
    LI[21]三柔性铰链280050~1000 Hz21.8
    本文提出的结构轴承和柔性铰链3810.710~1200 Hz17.25
    下载: 导出CSV
  • [1] 顾宏灿, 黄俊斌, 程玲, 等. 20~1250 Hz光纤激光加速度传感系统设计[J]. 中国光学(中英文),2017,10(4):469-476. doi: 10.3788/co.20171004.0469

    GU H C, HUANG J B, CHENG L, et al. 20-1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4): 469-476. (in Chinese) doi: 10.3788/co.20171004.0469
    [2] LI J H, MA H, YANG CH Y, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 2021, 14(3): 487-502. doi: 10.37188/CO.2020-0134
    [3] BAASCH B, HEUSEL J, ROTH M, et al. Train wheel condition monitoring via cepstral analysis of axle box accelerations[J]. Applied Sciences, 2021, 11(4): 1432. doi: 10.3390/app11041432
    [4] GOTO H, KANEKO Y, YOUNG J, et al. Extreme accelerations during earthquakes caused by elastic flapping effect[J]. Scientific Reports, 2019, 9(1): 1117. doi: 10.1038/s41598-018-37716-y
    [5] 朱峰, 唐毓涛, 高晨轩. 弓网离线电弧对CRH380BL型动车组速度传感器的电磁干扰机理及抑制[J]. 中国铁道科学,2016,37(6):69-74. doi: 10.3969/j.issn.1001-4632.2016.06.09

    ZHU F, TANG Y T, GAO CH X. Mechanism and suppression of electromagnetic interference of pantograph-catenary arc to speed sensor of CRH380BL electric multiple unit[J]. China Railway Science, 2016, 37(6): 69-74. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.06.09
    [6] 吴虎, 孔勇, 王振伟, 等. 基于端点检测与信号重组的光纤分布式传感信号识别[J]. 光子学报,2021,50(11):1106005. doi: 10.3788/gzxb20215011.1106005

    WU H, KONG Y, WANG ZH W, et al. Fiber distributed sensing signal recognition based on endpoint detection and signal recombination[J]. Acta Photonica Sinica, 2021, 50(11): 1106005. (in Chinese) doi: 10.3788/gzxb20215011.1106005
    [7] JIANG SH D, WANG Y Y, ZHANG F X, et al. A high-sensitivity FBG accelerometer and application for flow monitoring in oil wells[J]. Optical Fiber Technology, 2022, 74: 103128. doi: 10.1016/j.yofte.2022.103128
    [8] QIU ZH CH, SUN R, TENG Y T, et al. Design and test of a low frequency fiber Bragg grating acceleration sensor with double tilted cantilevers[J]. Optics Communications, 2022, 507: 127663. doi: 10.1016/j.optcom.2021.127663
    [9] 魏莉, 刘壮, 李恒春, 等. 基于“士”字形梁增敏结构的光纤光栅振动传感器[J]. 光学学报,2019,39(11):1106004.

    WEI L, LIU ZH, LI H CH, et al. Fiber Bragg grating vibration sensor based on sensitive structure for "Shi"-shaped beam[J]. Acta Optica Sinica, 2019, 39(11): 1106004. (in Chinese)
    [10] ZHAO X F, JIA ZH A, FAN W, et al. A fiber Bragg grating acceleration sensor with temperature compensation[J]. Optik, 2021, 241: 166993. doi: 10.1016/j.ijleo.2021.166993
    [11] LI T L, TAN Y G, HAN X, et al. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation[J]. Sensors, 2017, 17(1): 218.
    [12] 魏莉, 余玲玲, 姜达州, 等. 基于膜片与菱形结构的光纤布拉格光栅加速度传感器[J]. 中国激光,2019,46(9):0910003. doi: 10.3788/CJL201946.0910003

    WEI L, YU L L, JIANG D ZH, et al. Fiber Bragg grating accelerometer based on diaphragm and diamond structure[J]. Chinese Journal of Lasers, 2019, 46(9): 0910003. (in Chinese) doi: 10.3788/CJL201946.0910003
    [13] FAN W, WEN J, GAO H, et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J]. Optical Fiber Technology, 2022, 70: 102888. doi: 10.1016/j.yofte.2022.102888
    [14] WU H, LIN Q J, ZHAO N, et al. A high-frequency acceleration sensor based on fiber grating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7003808.
    [15] WANG X F, GUO Y X, XIONG L, et al. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal, 2018, 18(12): 4954-4960. doi: 10.1109/JSEN.2018.2833885
    [16] LI Y ZH, MA Q Q, CHEN F Y, et al. A flexible hinge accelerometer based on dual short fiber Bragg grating[J]. Sensors and Actuators A:Physical, 2022, 344: 113695. doi: 10.1016/j.sna.2022.113695
    [17] LIANG L, WANG H, LI Z CH, et al. Miniature bending-resistant fiber grating accelerometer based on a flexible hinge structure[J]. Optics Express, 2022, 30(19): 33502-33514. doi: 10.1364/OE.465453
    [18] YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J]. IEEE Sensors Journal, 2020, 20(9): 4713-4718. doi: 10.1109/JSEN.2019.2925017
    [19] LUO X D, LI Y F, FENG D Q, et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J]. Optical Fiber Technology, 2022, 68: 102795. doi: 10.1016/j.yofte.2021.102795
    [20] QIU ZH CH, ZHANG J Q, TENG Y T, et al. Hinge-type FBG acceleration sensor based on double elastic plate[J]. Scientific Reports, 2021, 11(1): 24319. doi: 10.1038/s41598-021-03628-7
    [21] LI Z CH, LIANG L, WANG H, et al. A medium-frequency fiber Bragg grating accelerometer based on flexible hinges[J]. Sensors, 2021, 21(21): 6968. doi: 10.3390/s21216968
    [22] FRIEDRICH R, LAMMERING R, HEURICH T. Nonlinear modeling of compliant mechanisms incorporating circular flexure hinges with finite beam elements[J]. Precision Engineering, 2015, 42: 73-79. doi: 10.1016/j.precisioneng.2015.04.001
    [23] 吴鹰飞, 周兆英. 柔性铰链转动刚度计算公式的推导[J]. 仪器仪表学报,2004,25(1):125-128,137. doi: 10.3321/j.issn:0254-3087.2004.01.032

    WU Y F, ZHOU ZH Y. Deduction of design equation of flexure hinge[J]. Chinese Journal of Scientific Instrument, 2004, 25(1): 125-128,137. (in Chinese) doi: 10.3321/j.issn:0254-3087.2004.01.032
    [24] 周晓林, 崔长彩, 范伟, 等. 柔性铰链的3种模型计算和分析[J]. 机械设计,2011,28(5):5-9. doi: 10.13841/j.cnki.jxsj.2011.05.014

    ZHOU X L, CUI CH C, FAN W, et al. Computation and analysis of the three models of flexure hinge[J]. Journal of Machine Design, 2011, 28(5): 5-9. (in Chinese) doi: 10.13841/j.cnki.jxsj.2011.05.014
    [25] 谢官模. 振动力学[M]. 北京: 国防工业出版社, 2007.

    XIE G M. Vibration Mechanical[M]. Beijing: National Defense Industry Press, 2007. (in Chinese)
    [26] 何道清, 张禾, 石明江. 传感器与传感器技术[M]. 4版. 北京: 科学出版社, 2020.

    HE D Q, ZHANG H, SHI M J. Sensors and Sensor Technology[M]. 4th ed. Beijing: Science Press, 2020. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  138
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 修回日期:  2022-12-23
  • 网络出版日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!