留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型头戴式单光子荧光显微成像技术研究进展

付强 张智淼 赵尚男 刘洋 董洋

付强, 张智淼, 赵尚男, 刘洋, 董洋. 微型头戴式单光子荧光显微成像技术研究进展[J]. 中国光学(中英文), 2023, 16(5): 1010-1021. doi: 10.37188/CO.2023-0007
引用本文: 付强, 张智淼, 赵尚男, 刘洋, 董洋. 微型头戴式单光子荧光显微成像技术研究进展[J]. 中国光学(中英文), 2023, 16(5): 1010-1021. doi: 10.37188/CO.2023-0007
FU Qiang, ZHANG Zhi-miao, ZHAO Shang-nan, LIU Yang, DONG Yang. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J]. Chinese Optics, 2023, 16(5): 1010-1021. doi: 10.37188/CO.2023-0007
Citation: FU Qiang, ZHANG Zhi-miao, ZHAO Shang-nan, LIU Yang, DONG Yang. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J]. Chinese Optics, 2023, 16(5): 1010-1021. doi: 10.37188/CO.2023-0007

微型头戴式单光子荧光显微成像技术研究进展

基金项目: 国家自然科学基金资助项目(No. 62005271);中国科学院青年创新促进会资助(No. 2021221);吉林省科技发展计划青年成长科技计划项目(No. 20210508054RQ)
详细信息
    作者简介:

    付 强(1985—),男,黑龙江佳木斯人,博士,副研究员,2008 年、2010 年于哈尔滨工业大学分别获得学士、硕士学位,2020 年于中国科学院大学获得博士学位,主要从事光学系统设计、红外探测设备总体论证等方面的研究。E-mail:fuqianghit@163.com

    张智淼(1999—),男,吉林长春人,硕士研究生,2021年于长春理工大学获得学士学位,主要从事光学系统设计方面的研究。E-mail:zhimiaozhang@qq.com

    赵尚男(1993—),女,吉林长春人,博士研究生,助理研究员,2015年、2018年于北京理工大学分别获得学士、硕士学位,主要从事计算成像、机器视觉、光学设计方面的研究。E-mail:1109949193@qq.com

    刘 洋(1989—),男,吉林长春人,硕士,助理研究员,2012年、2015年于北京航空航天大学分别获得学士、硕士学位,主要从事光学系统设计、杂散光抑制设计等方面的研究。E-mail:liu9527aaa@163.com

    董 洋(1987—),男,吉林长春人,硕士,助理研究员,2012年、2013年于白俄罗斯国立大学分别获得学士、硕士学位,主要从事光学系统设计方面的研究。E-mail:283841835@qq.com

  • 中图分类号: TH742;R318.51

Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique

Funds: Supported by National Natural Science Foundation of China (No. 62005271); Youth Innovation Promotion Association, CAS (No. 2021221); Youth growth technology program of Jilin province science and technology development plan (No. 20210508054RQ).
More Information
  • 摘要:

    微型头戴式单光子荧光显微成像技术是近些年出现的用于神经科学研究的一种突破性方法,可以对自由移动活体动物的神经活动进行实时成像,提供了一种前所未有的方式来访问神经信号,增强了对大脑如何工作的理解。在脑科学研究需求的推动下,目前已经出现了许多种类型的微型头戴式单光子荧光显微镜,如高分辨率成像、无线记录、三维成像、双区域成像和双色成像等。为了更加全面地了解和认识这种新兴的光学神经成像技术,本文按成像视场进行分类,对目前报道的不同类型微型头戴式单光子荧光显微镜所具有的特点进行了介绍,重点讨论了其所采用的光学系统方案和光学性能参数,分析对比了不同方案的优缺点,以及未来的改进方向,以便为脑科学研究人员的实际应用提供参考。

     

  • 图 1  具有基本成像功能的系统。(a)Ghosh等人的集成显微镜的横截面图[10];(b)MiniScope V3的分解图; (c)戴着微型显微镜的小鼠示意图[14];(d)小鼠大脑中神经元活动的荧光图像[14]

    Figure 1.  A system with a basic imaging function. (a) Cross sectional view of integrated microscope proposed by Ghosh et al; (b) exploded view of the MiniScope V3; (c) a schematic of a mouse wearing a miniature microscope; (d) fluorescent images of neural activity in a mouse brain

    图 2  具有无线功能的系统。(a)FinchScope的横截面图[19];(b)无线miniscope的内部光学元件布局图[22]

    Figure 2.  A system with wiress function. (a) Cross sectional view of FinchScope; (b) internal optics element layout of wireless miniscope

    图 3  具有三维成像功能的系统。(a)MiniLFM的横截面图[24];(b)Miniscope3D的横截面图[27];(c)Bagramyan等人的显微镜横截面图[28];(d)SIMscope3D的横截面图[29]

    Figure 3.  A system with 3D imaging functionality. (a) Cross sectional view of MiniLFM; (b) cross sectional view of Miniscope3D; (c) microscope cross section by Bagramyan et al; (d) cross sectional view of SIMscope3D

    图 4  具有双区域成像功能的系统。(a) NINscope的主体和内部光学元件布局图[31];(b)一只安装了两个NINscope的小鼠[31]

    Figure 4.  A system with dual region imaging functionality. (a) NINscope body and internal optics element layout; (b) a mouse with two NINscopes mounted

    图 5  具有双色成像功能的系统。(a)MiniScope V4的横截面图;(b)DCFIMM-SBI的横截面图[35];(c)DCFIMM-DBI的横截面图[35]

    Figure 5.  A system with two-color imaging functionality. (a) Cross sectional view of MiniScope V4; (b) cross sectional view of DCFIMM-SBI; (c) cross sectional view of DCFIMM-DBI

    图 6  现有的大视场系统。(a)cScope的成像路径光路图[36];(b)CM2的成像路径光路图[37];(c)完全组装的mScope[46]

    Figure 6.  Existing large filed of view system. (a) Imaging optical path of cScope; (b) imaging optical path of CM2; (c) fully assembled mScope

    表  1  具有基本成像功能的微型荧光显微镜的光学系统和光学性能参数

    Table  1.   Optical system and optical performance parameters of the miniature fluorescence microscope with basic imaging functionality

    系统参数Ghosh 等人MiniScope V3miniscopeCHEndoscopeBagramyan 等人
    物镜梯度折射率透镜梯度折射率透镜非球面透镜梯度折射率透镜梯度折射率透镜
    管镜双胶合透镜双胶合透镜双胶合透镜双胶合透镜平凸透镜
    视场600 μm×800 μm750 μm×450 μm1100 μm×1100 μm~500 μm~105 μm
    分辨率2.5 μm1.0 μm/pix单细胞分辨率单细胞分辨率1.0 μm
    图像传感器MT9V021
    (5.6 μm/pix)
    MT9V032
    (6.0 μm/pix)
    MT9V022
    (6.0 μm/pix)
    MT9P031
    (2.2 μm/pix)
    OV7251
    (3.0 μm/pix)
    成像速度36 Hz60 Hz10 Hz20 Hz50 Hz
    下载: 导出CSV

    表  2  具有无线功能的微型荧光显微镜的光学系统和光学性能参数

    Table  2.   Optical system and optical performance parameters of a miniature fluorescence microscope with wireless function

    系统参数FinchScopeWire-free MiniScopeminiscopewScope
    物镜梯度折射率透镜梯度折射率透镜非球面透镜梯度折射率透镜
    管镜双胶合透镜双胶合透镜双胶合透镜双胶合透镜
    视场800 μm×600 μm500 μm×500 μm700 μm×450 μm
    分辨率单细胞分辨率1 μm/pix单细胞分辨率1.8 μm
    图像传感器OV7960(6.00 μm/pix)EV76C454(5.80 μm/pix)MT9V022(6.00 μm/pix)OV7690 (1.75 μm/pix)
    成像速度30 Hz10 Hz10 Hz25 Hz
    下载: 导出CSV

    表  3  具有三维成像功能的微型荧光显微镜的光学系统和光学性能参数

    Table  3.   Optical system and optical performance parameters of the miniature fluorescence microscope with 3D imaging functionality

    系统参数MiniLFMMiniscope3DBagramyan等人OMKAR 等人
    物镜梯度折射率透镜梯度折射率透镜梯度折射率透镜两片双胶合透镜
    管镜双胶合透镜相位掩模板平凸透镜双胶合透镜
    视场700 μm×600 μm×360 μm900 μm×700 μm×390 μm横向 150 μm
    轴向 98 μm
    横向207 μm
    轴向220 μm
    三维成像元件微透镜阵列相位掩模板可调谐液晶透镜电湿润透镜
    横向分辨率6.0 μm2.8 μm1.4 μm1.0 μm/pix
    轴向分辨率30.0 μm15.0 μm15.0 μm18.0 μm
    图像传感器MT9V032 (6.0 μm/pix)MT9V032 (6.0 μm/pix)OV7251 (3.0 μm/pix)MT9P031 (2.2 μm/pix)
    成像速度16 Hz40 Hz50 Hz
    下载: 导出CSV

    表  4  具有双区域成像功能的微型荧光显微镜的光学系统和光学性能参数

    Table  4.   Optical system and optical performance parameters of a miniature fluorescence microscope with dual region imaging functionality

    系统参数Gonzalez 等人NINscope
    物镜梯度折射率透镜梯度折射率透镜
    管镜双胶合透镜平凸透镜
    视场600 μm×479 μm786 μm×502 μm
    分辨率0.83 μm/pix单细胞分辨率
    图像传感器OV7690 (6 μm/pix)PYTHON480 (4.8 μm/pix)
    成像速度30 Hz
    下载: 导出CSV

    表  5  具有双色成像功能的微型荧光显微镜的光学系统和光学性能参数

    Table  5.   Optical system and optical performance parameters of a miniature fluorescence microscope with two-color imaging functionality

    系统参数MiniScope V4DCFIMM-SBIDCFIMM-DBI
    物镜两片双胶合透镜两片双胶合透镜双胶合透镜
    管镜双胶合透镜双胶合透镜双胶合透镜
    视场~1.00 mm21.10 mm×1.10 mm0.77 mm×0.77 mm
    分辨率单细胞分辨率3.47 μm3.47 μm
    图像传感器PYTHON480
    (4.8 μm/pix)
    EV76C454
    (5.8 μm/pix)
    EV76C454
    (5.8 μm/pix)
    成像速度120 Hz20 Hz20 Hz
    下载: 导出CSV

    表  6  小视场微型单光子荧光显微镜的光学系统组成和光学性能参数

    Table  6.   Optical system composition and optical performance parameters of miniature single photon fluorescence microscope with a small field

    系统参数小视场系统 (FOV<1mm)
    物镜梯度折射率透镜[9-10,15-17,21,23-24,27-28,30-31]
    双胶合透镜[29,32,35] 、非球面透镜 [12,22]
    管镜双胶合透镜[9-10,12,15,17,21-24,29-30,32,35]
    平凸透镜[16,28,31] 、相位掩模板 [27]
    分辨率范围最小:1 μm [16] , 最大:6 μm [24]
    重量范围最小:1.3 g[16] , 最大:6.7 g[29]
    下载: 导出CSV

    表  7  大视场微型荧光显微镜的光学系统和光学性能参数

    Table  7.   Optical system and optical performance parameters of a large field miniature fluorescence microscope

    cScopeCM2mScope
    物镜多片球面透镜微透镜阵列双凸透镜
    管镜多片球面透镜
    视场7.8 mm×4.0 mm7.3 mm×8.1 mm×
    2.5 mm
    8.0 mm×10.0 mm
    横向分辨率14.0 μm7 μm39.4~55.7 μm
    图像传感器MT9V032
    (6 µm/pix)
    MT9P031
    (2.2 µm/pix)
    MT9V032
    (6 µm/pix)
    成像速度60Hz
    下载: 导出CSV
  • [1] CHEN SH Y, WANG Z CH, ZHANG D, et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals[J]. Neuroscience Bulletin, 2020, 36(10): 1182-1190. doi: 10.1007/s12264-020-00561-z
    [2] GRIENBERGER C, KONNERTH A. Imaging calcium in neurons[J]. Neuron, 2012, 73(5): 862-885. doi: 10.1016/j.neuron.2012.02.011
    [3] 王义强, 林方睿, 胡睿, 等. 大视场光学显微成像技术[J]. 中国光学(中英文),2022,15(6):1194-1210.

    WANG Y Q, LIN F R, HU R, et al. Large field-of-view optical microscopic imaging technology[J]. Chinese Optics, 2022, 15(6): 1194-1210. (in Chinese)
    [4] 陈帅, 任林, 周镇乔, 等. 在体跨尺度双光子显微成像技术[J]. 中国光学(中英文),2022,15(6):1167-1181.

    CHEN SH, REN L, ZHOU ZH Q, et al. In-vivo across-scales two-photon microscopic imaging technique[J]. Chinese Optics, 2022, 15(6): 1167-1181. (in Chinese)
    [5] 王鹏, 周瑶, 赵宇轩, 等. 用于多尺度高分辨率三维成像的双环光片荧光显微技术[J]. 中国光学(中英文),2022,15(6):1321-1331.

    WANG P, ZHOU Y, ZHAO Y X, et al. Double-ring-modulated light sheet fluorescence microscopic technique for multi-scale high-resolution 3D imaging[J]. Chinese Optics, 2022, 15(6): 1321-1331. (in Chinese)
    [6] YU H, SENARATHNA J, TYLER B M, et al. Miniaturized optical neuroimaging in unrestrained animals[J]. NeuroImage, 2015, 113: 397-406. doi: 10.1016/j.neuroimage.2015.02.070
    [7] AHARONI D, KHAKH B S, SILVA A J, et al. All the light that we can see: a new era in miniaturized microscopy[J]. Nature Methods, 2019, 16(1): 11-13. doi: 10.1038/s41592-018-0266-x
    [8] ZONG W J, WU R L, LI M L, et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 2017, 14(7): 713-719. doi: 10.1038/nmeth.4305
    [9] GHOSH K K, BURNS L D, COCKER E D, et al. Miniaturized integration of a fluorescence microscope[J]. Nature Methods, 2011, 8(10): 871-878. doi: 10.1038/nmeth.1694
    [10] CAI D J, AHARONI D, SHUMAN T, et al. A shared neural ensemble links distinct contextual memories encoded close in time[J]. Nature, 2016, 534(7605): 115-118. doi: 10.1038/nature17955
    [11] CAMPOS P, WALKER J J, MOLLARD P. Diving into the brain: deep-brain imaging techniques in conscious animals[J]. Journal of Endocrinology, 2020, 246(2): R33-R50. doi: 10.1530/JOE-20-0028
    [12] BARBERA G, LIANG B, ZHANG L F, et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information[J]. Neuron, 2016, 92(1): 202-213. doi: 10.1016/j.neuron.2016.08.037
    [13] ZHANG L F, LIANG B, BARBERA G, et al. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals[J]. Current Protocols in Neuroscience, 2019, 86(1): e56. doi: 10.1002/cpns.56
    [14] LIANG B, ZHANG L F, BARBERA G, et al. Distinct and dynamic ON and OFF neural ensembles in the prefrontal cortex code social exploration[J]. Neuron, 2018, 100(3): 700-714.e9. doi: 10.1016/j.neuron.2018.08.043
    [15] JACOB A D, RAMSARAN A I, MOCLE A J, et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice[J]. Current Protocols in Neuroscience, 2018, 84(1): e51. doi: 10.1002/cpns.51
    [16] BAGRAMYAN A. Lightweight 1-photon miniscope for imaging in freely behaving animals at subcellular resolution[J]. IEEE Photonics Technology Letters, 2020, 32(15): 909-912. doi: 10.1109/LPT.2020.3004283
    [17] LIBERTI III W A, MARKOWITZ J E, PERKINS L N, et al. Unstable neurons underlie a stable learned behavior[J]. Nature Neuroscience, 2016, 19(12): 1665-1671. doi: 10.1038/nn.4405
    [18] COHEN Y, SHEN J, SEMU D, et al. Hidden neural states underlie canary song syntax[J]. Nature, 2020, 582(7813): 539-544. doi: 10.1038/s41586-020-2397-3
    [19] LIBERTI III W A, PERKINS L N, LEMAN D P, et al. An open source, wireless capable miniature microscope system[J]. Journal of Neural Engineering, 2017, 14(4): 045001. doi: 10.1088/1741-2552/aa6806
    [20] Alvarado J S, Goffinet J, Michael V, et al. Neural dynamics underlying birdsong practice and performance[J]. Nature, 2021, 599(7886): 635-639.
    [21] SHUMAN T, AHARONI D, CAI D J, et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice[J]. Nature Neuroscience, 2020, 23(2): 229-238. doi: 10.1038/s41593-019-0559-0
    [22] BARBERA G, LIANG B, ZHANG L F, et al. A wireless miniScope for deep brain imaging in freely moving mice[J]. Journal of Neuroscience Methods, 2019, 323: 56-60. doi: 10.1016/j.jneumeth.2019.05.008
    [23] WANG Y ZH, MA ZH T, LI W ZH, et al.. Cable-free brain imaging with miniature wireless microscopes[J]. Journal of Biomedical Optics, 2023, 28(2): 026503.
    [24] SKOCEK O, NÖBAUER T, WEILGUNY L, et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J]. Nature Methods, 2018, 15(6): 429-432. doi: 10.1038/s41592-018-0008-0
    [25] PREVEDEL R, YOON Y G, HOFFMANN M, et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nature Methods, 2014, 11(7): 727-730. doi: 10.1038/nmeth.2964
    [26] NÖBAUER T, SKOCEK O, PERNÍA-ANDRADE A J, et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy[J]. Nature Methods, 2017, 14(8): 811-818. doi: 10.1038/nmeth.4341
    [27] YANNY K, ANTIPA N, LIBERTI W, et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy[J]. Light:Science &Applications, 2020, 9: 171.
    [28] BAGRAMYAN A, TABOURIN L, RASTQAR A, et al. Focus-tunable microscope for imaging small neuronal processes in freely moving animals[J]. Photonics Research, 2021, 9(7): 1300-1309. doi: 10.1364/PRJ.418154
    [29] SUPEKAR O D, SIAS A, HANSEN S R, et al. Miniature structured illumination microscope for in vivo 3D imaging of brain structures with optical sectioning[J]. Biomedical Optics Express, 2022, 13(4): 2530-2541. doi: 10.1364/BOE.449533
    [30] GONZALEZ W G, ZHANG H W, HARUTYUNYAN A, et al. Persistence of neuronal representations through time and damage in the hippocampus[J]. Science, 2019, 365(6455): 821-825. doi: 10.1126/science.aav9199
    [31] DE GROOT A, VAN DEN BOOM B J G, VAN GENDEREN R M, et al. NINscope, a versatile miniscope for multi-region circuit investigations[J]. eLife, 2020, 9: e49987. doi: 10.7554/eLife.49987
    [32] Silva A J. Miniaturized two-photon microscope: seeing clearer and deeper into the brain[J]. Light,science &applications, 2017, 6(8): e17104.
    [33] WIRTSHAFTER H S, DISTERHOFT J F. In vivo multi-day calcium imaging of CA1 hippocampus in freely moving rats reveals a high preponderance of place cells with consistent place fields[J]. Journal of Neuroscience, 2022, 42(22): 4538-4554. doi: 10.1523/JNEUROSCI.1750-21.2022
    [34] AHARONI D, HOOGLAND T M. Circuit investigations with open-source miniaturized microscopes: past, present and future[J]. Frontiers in Cellular Neuroscience, 2019, 13: 141. doi: 10.3389/fncel.2019.00141
    [35] 蓝凯秋, 杨西斌, 徐宝腾, 等. 双色荧光成像在体微型显微镜[J]. 光子学报,2022,51(6):0618001. doi: 10.3788/gzxb20225106.0618001

    LAN K Q, YANG X B, XU B T, et al. In vivo, dual-color fluorescent imaging miniature microscope[J]. Acta Photonica Sinica, 2022, 51(6): 0618001. (in Chinese) doi: 10.3788/gzxb20225106.0618001
    [36] SCOTT B B, THIBERGE S Y, GUO C Y, et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope[J]. Neuron, 2018, 100(5): 1045-1058.e5. doi: 10.1016/j.neuron.2018.09.050
    [37] XUE Y J, DAVISON I G, BOAS D A, et al. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope[J]. Science Advances, 2020, 6(43): eabb7508. doi: 10.1126/sciadv.abb7508
    [38] STERN A, JAVIDI B. Three-dimensional image sensing, visualization, and processing using integral imaging[J]. Proceedings of the IEEE, 2006, 94(3): 591-607. doi: 10.1109/JPROC.2006.870696
    [39] 邓慧, 吕国皎, 杨梅, 等. 基于掩膜板阵列的消串扰集成成像3D显示方法[J]. 液晶与显示,2022,37(5):592-597. doi: 10.37188/CJLCD.2022-0027

    DENG H, LYU G J, YANG M, et al. Crosstalk-free integral imaging 3D display method based on a mask array[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 592-597. (in Chinese) doi: 10.37188/CJLCD.2022-0027
    [40] CONG L, WANG Z G, CHAI Y M, et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)[J]. eLife, 2017, 6: e28158. doi: 10.7554/eLife.28158
    [41] 徐斌, 于迅博, 高鑫, 等. 一种视点均匀分布的桌面式光场显示系统[J]. 液晶与显示,2022,37(5):573-580. doi: 10.37188/CJLCD.2022-0041

    XU B, YU X B, GAO X, et al. Tabletop light field display system with uniform distribution of viewpoints[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 573-580. (in Chinese) doi: 10.37188/CJLCD.2022-0041
    [42] 于迅博, 李涵宇, 高鑫, 等. 基于预处理卷积神经网络提升3D光场显示视觉分辨率的方法[J]. 液晶与显示,2022,37(5):549-554. doi: 10.37188/CJLCD.2022-0044

    YU X B, LI H Y, GAO X, et al. 3D light field display with improved visual resolution based on pre-processing convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(5): 549-554. (in Chinese) doi: 10.37188/CJLCD.2022-0044
    [43] TANIDA J, KUMAGAI T, YAMADA K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Applied Optics, 2001, 40(11): 1806-1813. doi: 10.1364/AO.40.001806
    [44] MCCALL B, OLSEN R J, NELLES N J, et al. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis[J]. Archives of Pathology &Laboratory Medicine, 2014, 138(3): 379-389.
    [45] ANTIPA N, KUO G, HECKEL R, et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 2018, 5(1): 1-9. doi: 10.1364/OPTICA.5.000001
    [46] RYNES M L, SURINACH D A, LINN S, et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice[J]. Nature Methods, 2021, 18(4): 417-425. doi: 10.1038/s41592-021-01104-8
    [47] WU J M, GUO Y D, DENG CH, et al. An integrated imaging sensor for aberration-corrected 3D photography[J]. Nature, 2022, 612(7938): 62-71. doi: 10.1038/s41586-022-05306-8
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  796
  • HTML全文浏览量:  271
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-02-05
  • 录用日期:  2023-03-24
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回