留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太极计划时钟噪声传递的地面原理验证

江强 董鹏 刘河山 罗子人

江强, 董鹏, 刘河山, 罗子人. 太极计划时钟噪声传递的地面原理验证[J]. 中国光学(中英文), 2023, 16(6): 1394-1403. doi: 10.37188/CO.2023-0012
引用本文: 江强, 董鹏, 刘河山, 罗子人. 太极计划时钟噪声传递的地面原理验证[J]. 中国光学(中英文), 2023, 16(6): 1394-1403. doi: 10.37188/CO.2023-0012
JIANG Qiang, DONG Peng, LIU He-shan, LUO Zi-ren. Ground-based principle verification of clock noise transfer for the Taiji program[J]. Chinese Optics, 2023, 16(6): 1394-1403. doi: 10.37188/CO.2023-0012
Citation: JIANG Qiang, DONG Peng, LIU He-shan, LUO Zi-ren. Ground-based principle verification of clock noise transfer for the Taiji program[J]. Chinese Optics, 2023, 16(6): 1394-1403. doi: 10.37188/CO.2023-0012

太极计划时钟噪声传递的地面原理验证

基金项目: 国家重点研发计划资助(No. 2020YFC2200104);国科大杭州高等研究院专项资金(No. 2022ZZ01006)
详细信息
    作者简介:

    江 强(1996—),男,湖北黄冈人,硕士,现就读于国科大杭州高等研究院,主要从事引力波探测时钟噪声传递方面的研究。E-mail:jiangqiang20@mails.ucas.ac.cn

    董 鹏(1978—),男,辽宁抚顺人,2011年于中国科学院研究生院获得博士学位,现为国科大杭州高等研究院高级工程师,研究领域涉及激光干涉测距、空间惯性传感器及其地面测试等。E-mail:dongpeng@ucas.ac.cn

    刘河山(1988—),男,安徽阜阳人,博士,副研究员,2015年于中国科学院大学获得博士学位,现为中国科学院力学研究所副研究员,研究领域涉及激光干涉测距、高精度相位测量、精密指向控制、激光锁相等。E-mail:liuheshan@imech.ac.cn

    罗子人(1980—),男,湖南长沙人,2010年于中国科学院数学与系统科学研究院获得理学博士,现为中国科学院力学研究所研究员,太极计划首席科学家助理,主要从事引力波探测的空间激光干涉测距技术的理论分析和方案设计方面的研究。E-mail:luoziren@imech.ac.cn

  • 中图分类号: O439;P171.3

Ground-based principle verification of clock noise transfer for the Taiji program

Funds: Supported by the National Key Research and Development Program (No. 2020YFC2200104); the Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. 2022ZZ01006)
More Information
  • 摘要:

    太极计划是中国科学院提出的空间引力波探测任务,其利用激光差分干涉的方法探测卫星间由引力波引起的pm级位移波动。为消除卫星间因时钟不同步而产生的测量误差,拟采用边带倍频时钟噪声传递方法进行星间时钟噪声测量与消除。本文讨论太极计划星间时钟噪声传递的需求、原理、方法,并设计实验进行原理验证。通过搭建电子学实验测试两个系统时钟噪声的极限值,确定实验相关参数,进一步通过光学实验验证边带倍频传递方案的原理。实验结果表明,本文提出的时钟噪声消除方案及相关参数合理可行,满足太极计划的应用需求。在0.05 Hz~1 Hz频段,星间时钟噪声的抑制效果优于2π×10−5 rad/Hz1/2,满足太极探路者的噪声需求。本文研究为未来太极计划的时钟噪声传递方案与参数设计奠定实验和理论基础。

     

  • 图 1  时钟噪声传递原理图

    Figure 1.  The principle diagram of clock noise transmission

    图 2  激光功率比和调制指数m的关系

    Figure 2.  The relationship of power rate and modulation index m

    图 3  电子学实验原理框图。$ \overline {{\phi _{i,j}}} $表示相位计PM1的j通道对信号i的读出,$ \overline{\overline {{\phi _{i,j}}}} $表示相位计PM2的j通道对信号i的读出(i=1, 2; j=1, 2, 3, 4)

    Figure 3.  Schematic diagram of the electronic experiment. $ \overline {{\phi _{i,j}}} $ represents the readout of signal i by the j channel of the phasemeter PM1, $ \overline{\overline {{\phi _{i,j}}}} $represents the readout of signal i by the j channel of the phasemeter PM2 (i=1, 2; j=1, 2, 3, 4)

    图 4  电子学实验硬件实物图

    Figure 4.  The hardware device picture of electronics experiment

    图 5  电子学实验的典型结果

    Figure 5.  Typical results of electronics experiment

    图 6  光学实验原理图

    Figure 6.  Schematic diagram of optical experiment

    图 7  光学实验硬件实物图

    Figure 7.  The hardware device picture of optical experiment

    图 8  拍频信号频谱图

    Figure 8.  Spectrogram of beat frequency signal

    图 9  光学实验典型结果

    Figure 9.  Typical results of optical experiment

  • [1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [2] GAIR J R, VALLISNERI M, LARSON S L, et al. Testing general relativity with low-frequency, space-based gravitational-wave detectors[J]. Living Reviews in Relativity, 2013, 16(1): 7. doi: 10.12942/lrr-2013-7
    [3] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447.

    LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese)
    [4] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA pathfinder: in-flight performance of the optical test mass readout[J]. Physical Review Letters, 2021, 126(13): 131103. doi: 10.1103/PhysRevLett.126.131103
    [5] ARMANO M, AUDLEY H, BAIRD J, et al. Sensor noise in LISA Pathfinder: an extensive in-flight review of the angular and longitudinal interferometric measurement system[J]. Physical Review D, 2022, 106(8): 082001. doi: 10.1103/PhysRevD.106.082001
    [6] HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [7] THE TAIJI SCIENTIFIC COLLABORATION. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34. doi: 10.1038/s42005-021-00529-z
    [8] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [9] LUO J, BAI Y ZH, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a
    [10] 刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学,2019,12(3):486-492. doi: 10.3788/co.20191203.0486

    LIU H SH, GAO R H, LUO Z R, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) doi: 10.3788/co.20191203.0486
    [11] 邓汝杰, 张艺斌, 刘河山, 等. 太极计划中的星间激光测距地面电子学验证[J]. 中国光学(中英文), 2023, 16(4): 765-776.

    DENG R J, ZHANG Y B, LIU H SH, et al.. Ground electronics verification of inter-satellites laser ranging in the Taiji program[J]. Chinese Optics, 2023, 16(4): 765-776. (in Chinese)
    [12] 李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学(中英文),2022,15(4):761-769. doi: 10.37188/CO.2022-0018

    LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese) doi: 10.37188/CO.2022-0018
    [13] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报,2020,7(1):3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10. (in Chinese)
    [14] BARKE S. Inter-spacecraft frequency distribution for future gravitational wave observatories[D] Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.
    [15] BARKE S, TRÖBS M, SHEARD B, et al. EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA[J]. Applied Physics B, 2009, 98(1): 33-39.
    [16] HELLINGS R W. Elimination of clock jitter noise in spaceborne laser interferometers[J]. Physical Review D, 2001, 64(2): 022002. doi: 10.1103/PhysRevD.64.022002
    [17] OTTO M, HEINZEL G, DANZMANN K. TDI and clock noise removal for the split interferometry configuration of LISA[J]. Classical and Quantum Gravity, 2012, 29(20): 205003. doi: 10.1088/0264-9381/29/20/205003
    [18] TINTO M, DHURANDHAR S V. Time-delay interferometry[J]. Living Reviews in Relativity, 2020, 24(1): 1.
    [19] 王登峰, 姚鑫, 焦仲科, 等. 面向天基引力波探测的时间延迟干涉技术[J]. 中国光学,2021,14(2):275-288. doi: 10.37188/CO.2020-0098

    WANG D F, YAO X, JIAO ZH K, et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. (in Chinese) doi: 10.37188/CO.2020-0098
    [20] YAMAMOTO K, VORNDAMME C, HARTWIG O, et al. Experimental verification of intersatellite clock synchronization at LISA performance levels[J]. Physical Review D, 2022, 105(4): 042009. doi: 10.1103/PhysRevD.105.042009
    [21] LIU H SH, YU T, LUO Z R. A low-noise analog frontend design for the Taiji phasemeter prototype[J]. Review of Scientific Instruments, 2021, 92(5): 054501. doi: 10.1063/5.0042249
  • 加载中
图(9)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  236
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-02-05
  • 录用日期:  2023-03-14
  • 网络出版日期:  2023-03-21

目录

    /

    返回文章
    返回