留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性传感器地面弱力测量系统热设计

任丽敏 陈立恒 孟旭 王智

任丽敏, 陈立恒, 孟旭, 王智. 惯性传感器地面弱力测量系统热设计[J]. 中国光学(中英文), 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022
引用本文: 任丽敏, 陈立恒, 孟旭, 王智. 惯性传感器地面弱力测量系统热设计[J]. 中国光学(中英文), 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022
REN Li-min, CHEN Li-heng, MENG Xu, WANG Zhi. Thermal design of ground weak force measurement system for inertial sensors[J]. Chinese Optics, 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022
Citation: REN Li-min, CHEN Li-heng, MENG Xu, WANG Zhi. Thermal design of ground weak force measurement system for inertial sensors[J]. Chinese Optics, 2023, 16(6): 1404-1413. doi: 10.37188/CO.2023-0022

惯性传感器地面弱力测量系统热设计

基金项目: 国家重点研发计划资助(No. 2020YFC2200600)
详细信息
    作者简介:

    任丽敏(1996—),男,内蒙古包头人,硕士研究生,2023年于中国科学院大学获得硕士学位,主要从事航天器热控技术相关研究。E-mail:18845044015@163.com

    陈立恒(1979—),男,吉林长春人,博士,研究员,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间光学遥感器热控技术相关研究。E-mail:chenliheng3@163.com

    孟 旭(1999—),男,甘肃白银人,博士研究生,主要从事热控结构增材制造相关研究。E-mail:mengxu4836@163.com

    王 智(1979—),男,吉林长春人,博士,研究员,博士生导师,主要从事空间引力波探测惯性传感器、空间引力波探测激光干涉测量系统等方面的研究。E-mail:wz070611@126.com

  • 中图分类号: V524.3

Thermal design of ground weak force measurement system for inertial sensors

Funds: Supported by National Key R & D Program of China (No. 2020YFC2200600)
More Information
  • 摘要:

    为了满足惯性传感器地面弱力测量系统的超高温度稳定性要求,对整个系统进行了热设计。首先,介绍了惯性传感器地面弱力测量系统的结构、敏感结构传热路径和内部热源。其次,根据系统热控指标要求,提出了采用三级热控结构和比例积分微分(PID)控制算法相结合的高精度热控方式,减少温度噪声对惯性传感器探测灵敏度的影响。然后,采用UG/NX软件建立有限元模型,并进行了不同工况条件下的热分析计算,得到了惯性传感器地面弱力测量系统在时域上达到平衡后的温度变化值为(1.2~1.6) ×10−5 K。最后,将惯性传感器地面弱力测量系统在时域上的温度分布在频域上进行描述,得到惯性传感器敏感结构的温度稳定性结果。分析结果表明,在当前热控措施下,惯性传感器敏感结构的温度稳定性均优于10−4 K/Hz1/2,满足热控指标需求,热设计方案合理可行。

     

  • 图 1  惯性传感器地面弱力测量系统结构

    Figure 1.  Overall structure of the ground weak force measurement system for inertial sensor

    图 2  惯性传感器地面弱力测量系统传热路径示意图

    Figure 2.  Schematic diagram of heat transfer path of the ground weak force measurement system for inertial sensor

    图 3  惯性传感器地面弱力测量系统热控结构示意图

    Figure 3.  Schematic diagram of the thermal control structure of the ground weak force measurement system for inertial sensor

    图 4  PID控制原理图

    Figure 4.  Schematic diagram of PID control principle

    图 5  惯性传感器地面弱力测量系统有限元模型

    Figure 5.  Finite element model of the ground weak force measurement system for inertial sensor

    图 6  实验室温度边界曲线。(a)高温工况;(b)低温工况

    Figure 6.  Laboratory temperature boundary curve. (a) High temperature condition; (b) low temperature condition

    图 7  高温工况敏感结构温度变化曲线。(a)一级扭秤电极笼整体温度变化曲线;(b)一级扭秤电极笼24 h温度变化曲线

    Figure 7.  Temperature curves of the sensitive component under high temperature condition. (a) Overall temperature change curve and (b) the temperature change curve in 24 h of the electrode housing of primary torsion balance

    图 8  高温工况一级扭秤电极笼温度稳定性曲线

    Figure 8.  Temperature stability curve of the electrode housing of primary torsion balance under high temperature condition

    图 9  低温工况敏感结构温度曲线。(a) 一级扭秤电极笼整体温度变化曲线;(b) 一级扭秤电极笼24 h温度变化曲线

    Figure 9.  Temperature curves of the sensitive component under low temperature condition. (a) Overall temperature change curve and (b) the temperature change curve in 24 h of the electrode housing of primary torsion balance

    图 10  低温工况一级扭秤电极笼温度稳定性曲线

    Figure 10.  Temperature stability curve of the sensitive component under low temperature condition

    图 11  高温工况无主动热控条件下敏感结构温度曲线。(a) 一级扭秤电极笼整体温度变化曲线;(b) 一级扭秤电极笼24 h温度变化曲线

    Figure 11.  Temperature curve of sensitive component under high temperature condition without active thermal control. (a) Overall temperature change curve and (b) temperature change curve in 24 h of the electrode housing of primary torsion balance

    图 12  高温工况无主动热控条件下一级扭秤电极笼温度稳定性曲线

    Figure 12.  Temperature stability curve of the sensitive component under high temperature condition without active thermal control

    表  1  测量系统内各热源发热功耗

    Table  1.   Thermal power consumptions of heat sources in measuring system

    名称功耗(W)工作模式
    离子泵100长期
    分子泵100长期
    五自由度调整平台12短期
    下载: 导出CSV

    表  2  热控结构及测量系统部分结构材料表

    Table  2.   List of structural materials of thermal control structure and measuring system

    结构名称 村料名称 密度(kg/m3) 导热系数(W/(m·K)) 比热容(J/(kg·K))
    隔热层内外层 铝蜂窝 50 0.88 921
    隔热层夹层 聚苯乙烯 31 0.04 1 500
    真空试验舱 不锈钢316L 7 980 15.21 502
    隔热垫 聚酰亚胺 1 450 0.3 1 090
    光学元件 微晶玻璃 2 303 1.39 578
    测量系统结构件 铝合金 2 702 150 907
    下载: 导出CSV
  • [1] CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593): 150-151. doi: 10.1038/531150a
    [2] HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [3] GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889. doi: 10.1038/s41550-021-01480-3
    [4] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [5] LOBO A, NOFRARIAS M, RAMOS-CASTRO J, et al. On-ground tests of the LISA PathFinder thermal diagnostics system[J]. Classical and Quantum Gravity, 2006, 23(17): 5177-5193. doi: 10.1088/0264-9381/23/17/005
    [6] HIGUCHI S, SUN K X, DEBRA D B, et al. Design of a highly stable and uniform thermal test facility for MGRS development[J]. Journal of Physics: Conference Series, 2009, 154: 012037. doi: 10.1088/1742-6596/154/1/012037
    [7] LUO J, BAI Y ZH, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. doi: 10.1088/1361-6382/aba66a
    [8] CHEN K, ZHANG X F, GUO T, et al. Key technologies analysis and design of ultra-clean & ultra-stable spacecraft for gravitational wave detection[J]. International Journal of Modern Physics A, 2021, 36(11-12): 2140021.
    [9] 刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341.

    LIU H, ZHANG X F, FENG J CH, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341. (in Chinese)
    [10] 王少鑫. 空间惯性传感器敏感结构构建及地面评价方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    WANG SH X. Research on the construction of the sensitive structure and ground evaluation method of space inertial sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. (in Chinese)
    [11] ARMANO M, AUDLEY H, AUGER G, et al. In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors[J]. Journal of Physics: Conference Series, 2015, 610: 012023. doi: 10.1088/1742-6596/610/1/012023
    [12] BENDER P L. LISA sensitivity below 0.1 mHz[J]. Classical and Quantum Gravity, 2003, 20(10): S301-S310. doi: 10.1088/0264-9381/20/10/333
    [13] LIU J Y, SERGATSKOV D A, DUNCAN R V. Adaptive optimal PI controller for high-precision low-temperature experiments[C]. Proceedings of the 2005, American Control Conference, IEEE, 2005: 4220-4224.
    [14] ZHANG J, ZHANG K Y. A particle swarm optimization approach for optimal design of PID controller for temperature control in HVAC[C]. Proceedings of 2011 Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, 2011: 230-233.
    [15] GUO T T, WANG Q T, SHEN Q. A high accurate adaptive temperature control algorithm based on fuzzy reasoning and PID control[J]. Applied Mechanics and Materials, 2013, 331: 352-355. doi: 10.4028/www.scientific.net/AMM.331.352
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  168
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-04
  • 修回日期:  2023-02-20
  • 录用日期:  2023-07-26
  • 网络出版日期:  2023-07-26

目录

    /

    返回文章
    返回