留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5.2 W高重频257 nm深紫外皮秒激光器

范灏然 陈曦 郑磊 谢文侠 季鑫 郑权

范灏然, 陈曦, 郑磊, 谢文侠, 季鑫, 郑权. 5.2 W高重频257 nm深紫外皮秒激光器[J]. 中国光学(中英文), 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026
引用本文: 范灏然, 陈曦, 郑磊, 谢文侠, 季鑫, 郑权. 5.2 W高重频257 nm深紫外皮秒激光器[J]. 中国光学(中英文), 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026
FAN Hao-ran, CHEN Xi, ZHENG Lei, XIE Wen-xia, JI Xin, ZHENG Quan. High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power[J]. Chinese Optics, 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026
Citation: FAN Hao-ran, CHEN Xi, ZHENG Lei, XIE Wen-xia, JI Xin, ZHENG Quan. High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power[J]. Chinese Optics, 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026

5.2 W高重频257 nm深紫外皮秒激光器

基金项目: 长春市科技发展计划重点研发专项(No. 21ZGG15)
详细信息
    作者简介:

    范灏然(1991—),男,吉林长春人,光学工程师,2018年于长春理工大学获得电子科学与技术专业硕士学位,现任职于长春新产业光电技术有限公司,主要从事全固态超快激光方面的研究。E-mail:fanhr@cnilaser.com

    陈 曦(1985—),女,吉林长春人,高级光学工程师,2012年于长春理工大学获得光学专业硕士学位,现任职于长春新产业光电技术有限公司,主要从事中红外固体激光方面研究。E-mail:chenxi@cnilaser.com

  • 中图分类号: TP394.1;TH691.9

High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power

Funds: Supported by the Key R & D Projects of Changchun Science and Technology Development Plan (No. 21ZGG15)
More Information
  • 摘要:

    为了提高半导体检测用深紫外激光器的检测效率,需要搭建高功率、高重频257 nm深紫外皮秒激光器实验平台。本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm深紫外激光器的实验研究。种子源采用中心波长为1030 nm、脉冲宽度为50 ps的光纤激光器,输出功率为20 mW,重复频率为19.8 MHz。通过两级掺镱双包层(65 μm/275 μm)光子晶体光纤棒放大结构,获得了1030 nm高功率基频光。利用二倍频晶体LBO、四倍频晶体BBO,采用腔外倍频方式获得了257 nm深紫外激光。种子源通过两级光子晶体光纤放大器输出的1030 nm基频光,输出功率为86 W,经过激光聚焦系统后,倍频得到二次谐波515 nm激光输出功率为47.5 W,四次谐波257 nm深紫外激光输出功率为5.2 W,四次谐波转换效率为6.05%。实验结果表明,该结构可获得高功率257 nm深紫外激光输出,为提高半导体检测用激光器的检测效率提供了新思路。

     

  • 图 1  257 nm深紫外皮秒激光器实验系统示意图

    Figure 1.  Schematic diagram of experimental system of 257 nm deep ultraviolet picosecond laser

    图 2  1030 nm基频光光斑能量分布

    Figure 2.  Spot energy distribution of 1030 nm fundamental frequency laser

    图 3  257 nm紫外激光测量光谱图

    Figure 3.  Measurement spectrum of 257 nm ultraviolet laser

    图 4  1030 nm基频光输出功率和257 nm紫外光输出功率随总泵浦功率的变化关系

    Figure 4.  Laser output powers of 1030 nm fundamental frequency light and 257 nm ultraviolet light as a function of total pump power

    图 5  四次谐波257 nm输出光斑能量分布图

    Figure 5.  Output spot energy distribution of the fourth harmonic at 257 nm

    图 6  257 nm紫外激光光束质量因子M2测量图

    Figure 6.  Measurement chart of quality factor M2 for 257 nm UV laser beam

    图 7  自相关仪测得的脉冲宽度

    Figure 7.  Measurement of pulse width by autocorrelator

    图 8  257 nm紫外激光频率测量图

    Figure 8.  257 nm UV laser frequency measurement chart

  • [1] 郑佳琪, 丛振华, 刘兆军, 等. 高重复频率超短激光脉冲产生及频率变换技术发展趋势[J]. 中国激光,2021,48(12):1201008. doi: 10.3788/CJL202148.1201008

    ZHENG J Q, CONG ZH H, LIU ZH J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008. (in Chinese) doi: 10.3788/CJL202148.1201008
    [2] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [3] 梁延杰, 刘景伟, 闫劭, 等. 蓝光LED激发深紫外上转换发光材料的光学定位与追踪应用[J]. 发光学报,2022,43(9):1436-1445. doi: 10.37188/CJL.20220177

    LIANG Y J, LIU J W, YAN SH, et al. Blue LED-excitable deep ultraviolet upconversion phosphor for optical locating and tracking application[J]. Chinese Journal of Luminescence, 2022, 43(9): 1436-1445. (in Chinese) doi: 10.37188/CJL.20220177
    [4] XU H, LU H, LI ZH L, et al. Deep-ultraviolet femtosecond laser source at 243nm for hydrogen spectroscopy[J]. Optics Express, 2021, 29(11): 17398-17404. doi: 10.1364/OE.426917
    [5] WU H Y, ZHANG ZH Q, CHEN S, et al. Development of a deep-ultraviolet pulse laser source operating at 234 nm for direct cooling of Al+ ion clocks[J]. Optics Express, 2021, 29(8): 11468-11478. doi: 10.1364/OE.421684
    [6] SADRAEIAN M, ZHANG L, AAVANI F et al.. Viral inactivation by light[J] elight, 2022,18(2).
    [7] KAWANO Y, HIKITA M, MATSUGAKI N, et al. A crystal-processing machine using a deep-ultraviolet laser: application to long-wavelength native SAD experiments[J]. Acta Crystallographica Section F:Structural Biology Communications, 2022, 78(2): 88-95. doi: 10.1107/S2053230X2101339X
    [8] 潘永刚, 林兆文, 王奔, 等. 深紫外大口径非球面反射膜的均匀性研究[J]. 中国光学(中英文),2022,15(4):740-746. doi: 10.37188/CO.2022-0005

    PAN Y G, LIN ZH W, WANG B, et al. Film Thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. (in Chinese) doi: 10.37188/CO.2022-0005
    [9] BAI ZH N, BAI ZH X, SUN X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 2020, 13(12): 2841. doi: 10.3390/ma13122841
    [10] 王佳敏, 季艳慧, 梁志勇, 等. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学,2022,15(2):242-250. doi: 10.37188/CO.2021-0160

    WANG J M, JI Y H, LIANG ZH Y, et al. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. (in Chinese) doi: 10.37188/CO.2021-0160
    [11] MÜLLER M, KLENKE A, GOTTSCHALL T, et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 2017, 42(14): 2826-2829. doi: 10.1364/OL.42.002826
    [12] TURCICOVA H, NOVAK O, ROSKOT L, et al. New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser[J]. Optics Express, 2019, 27(17): 24286-24299. doi: 10.1364/OE.27.024286
    [13] DÉLEN X, DEYRA L, BENOIT A, et al. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm[J]. Optics Letters, 2013, 38(6): 995-997. doi: 10.1364/OL.38.000995
    [14] 彭洋, 陈明祥, 罗小兵. 深紫外LED封装技术现状与展望[J]. 发光学报,2021,42(4):542-559. doi: 10.37188/CJL.20200394

    PENG Y, LUO M X, LUO X B. Status and perspectives of deep ultraviolet LED packaging technology[J]. Chinese Journal of Luminescence, 2021, 42(4): 542-559. (in Chinese) doi: 10.37188/CJL.20200394
    [15] WANG L L, XU P F, ZHOU D CH. 1.5μm laser properties of large mode field Er3+/Yb3+ co-doped microstructured fiber cone[J]. Chinese Journal of Luminescence, 2022, 43(4): 509-517. doi: 10.37188/CJL.20220010
    [16] GOLDBERG L, COLE B, MCINTOSH C, et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb: YAG laser[J]. Optics Express, 2016, 24(15): 17397-17405. doi: 10.1364/OE.24.017397
    [17] KOHNO K, ORII Y, SAWADA H, et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal[J]. Optics Letters, 2020, 45(8): 2351-2354. doi: 10.1364/OL.389017
    [18] LEI Z, HUIRU Z, NIT, et al.. 'plug and-play' plasmonic metafibers for ultrafast fiber lasers[J]. Light: Advanced Manufacturing. doi: 10.37188/lam.2022.045.
    [19] 陈晖, 白振旭, 王建才, 等. 百瓦级PCFA/LBO倍频绿光皮秒激光器[J]. 红外与激光工程,2021,50(11):20200522. doi: 10.3788/IRLA20200522

    CHEN H, BAI ZH X, WANG J C, et al. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522. (in Chinese) doi: 10.3788/IRLA20200522
    [20] HE H J, YU J, ZHU W T, et al. A deep-UV picosecond laser for photocathode electron gun[J]. Optics Communications, 2022, 512: 128059. doi: 10.1016/j.optcom.2022.128059
    [21] PAN L, GENG J H, JIANG SH B. High power picosecond green and deep ultraviolet generations with an all-fiberized MOPA[J]. Optics Letters, 2022, 47(19): 5140-5143. doi: 10.1364/OL.472644
  • 加载中
图(8)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  228
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-11
  • 修回日期:  2023-03-13
  • 网络出版日期:  2023-07-11

目录

    /

    返回文章
    返回