留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动探测及可见光通信一体化氮化物光电子芯片

冯萧萧 韩明宇 陈美鹏 方倩 王永进 李欣

冯萧萧, 韩明宇, 陈美鹏, 方倩, 王永进, 李欣. 运动探测及可见光通信一体化氮化物光电子芯片[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0028
引用本文: 冯萧萧, 韩明宇, 陈美鹏, 方倩, 王永进, 李欣. 运动探测及可见光通信一体化氮化物光电子芯片[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0028
FENG Xiao-xiao, HAN Ming-yu, CHEN Mei-peng, FANG Qian, WANG Yong-jin, LI Xin. Integrated nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics. doi: 10.37188/CO.2023-0028
Citation: FENG Xiao-xiao, HAN Ming-yu, CHEN Mei-peng, FANG Qian, WANG Yong-jin, LI Xin. Integrated nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics. doi: 10.37188/CO.2023-0028

运动探测及可见光通信一体化氮化物光电子芯片

doi: 10.37188/CO.2023-0028
基金项目: 中国博士后基金(No. 2018M640508);南京邮电大学1311人才计划(No. 1311);南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金资助课题(No. JZNY202109)
详细信息
    作者简介:

    冯萧萧(1999—),女,江苏徐州人,硕士研究生,2021年于金陵科技学院获得学士学位,现为南京邮电大学通信与信息工程学院硕士,主要从事三族氮化物光电子器件方面的研究。E-mail:1222014634@njupt.edu.cn

    李 欣(1984—),女,陕西三原人,博士,2013年于西安交通大学获得博士学位,现为南京邮电大学通信与信息工程学院副教授,主要从事硅基氮化镓光电子器件方面的研究。E-mail:lixin1984@njupt.edu.cn

  • 中图分类号: TN256

Integrated nitride optoelectronic chip for motion detection and visible light communication

Funds: Supported by China Postdoctoral Science Foundation funded project (No. 2018M640508); Talent Program of Nanjing University of Posts and Telecommunications (No. 1311); Project funded by open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education (No. JZNY202109)
More Information
  • 摘要:

    自然界中物体运动无处不在,随着智能汽车、6G移动通信的高速发展,对通信和运动探测传感融合的高集成度通感一体器件的需求日益增加。本文基于氮化镓多量子阱结构发光和探测并存的特点,提出了一种基于蓝宝石衬底外延生长氮化镓多量子阱材料的集成式光电子芯片,该芯片具有灵敏的运动探测功能及可见光通信功能。该光电子芯片的发射器向运动的目标物体发射蓝光波段可见光信号,经目标物体运动调制的可见光信号反射回光电子芯片的接收器部分,激发变化的光电流。分析接收器光电流变化,可探测以不同速度旋转的目标物体的运动情况,光电流曲线变化周期与目标物体旋转周期一致。本文还研究了光电子芯片的各项光电指标及可见光通信性能,该芯片可用作可见光通信系统收发终端,可以处理和传输芯片采集到的运动探测信号。基于氮化镓多量子阱材料的光电子芯片在低成本、低功耗、高集成度的光学运动探测领域提供了一条很有前途的途径,是一种具有实用价值的高集成度通感一体终端器件。

     

  • 图 1  (a)带有多量子阱结构的GaN材料可实现光电/电光信号的双向转换,(b)III族氮化物多量子阱材料的分层结构

    Figure 1.  (a) GaN materials with multiple quantum wells can realize the bi-directional conversion of optoelectronic / electro-optic signals, (b) Layered structure of III-nitride materials with multiple quantum wells

    图 2  (a) III族氮化物光电子芯片示意图,(b) III族氮化物光电子芯片的运动探测系统示意图

    Figure 2.  (a) Schematic diagram of III-nitride optoelectronic chip, (b) Schematic diagram of motion detection system for III-nitride optoelectronic chip

    图 3  III族氮化物光电子芯片的加工流程图

    Figure 3.  Fabrication process of III-nitride optoelectronic chip

    图 4  (a) 光电子芯片的整体光镜图,(b) 发射/接收区域光镜图,(c)DBR层电子显微镜图,(d)单个发射器/接收器的局部放大光镜图

    Figure 4.  (a) Optical microscope image of optoelectronic chip, (b) optical microscope image of transmitting / receiving region, (c) SEM image of DBR layer, (d) the local magnification light optical microscope image of a single transmitter/receiver

    图 5  (a) 发射器/接收器的电流-电压(I-V)曲线,(b) 电容-电压(C-V)曲线

    Figure 5.  (a) Current-voltage curve of transmitter/receiver, (b) capacitance-voltage curve of transmitter/receiver

    图 6  光电子芯片发射器的电致发光(EL)谱和接收器的探测谱

    Figure 6.  Electroluminescence (EL) spectrum of transmitter and detection spectrum of receiver

    图 7  注入不同电流的发射器发光图片

    Figure 7.  Luminous picture of transmitter with different currents

    图 8  光电子芯片的运动探测系统示意图

    Figure 8.  Schematic of motion detection system of optoelectronic chip

    图 9  发射器偏压为2.9 V时不同转速反射镜运动下接收器的探测光电流

    Figure 9.  Receiver photocurrent under different rotating speed of mirror when bias voltage of transmitter is 2.9 V

    图 10  反射镜在200rpm的运动转速下发射器偏压设置为2.7 V~2.9 V时接收器的探测光电流

    Figure 10.  Receiver photocurrent under 200rpm rotating speed of mirror when bias voltage of transmitter is 2.7 V-2.9 V.

    图 11  (a)变速电机和(b)变速运动探测的光电流曲线

    Figure 11.  (a) Variable speed motor and (b) photocurrent curve of variable speed motion detection

    图 12  (a)作为发射器的光电子芯片的可见光通信测试系统,作为发射器的光电子芯片在25 Mbps传输速率下的收发信号波形(b)和眼图(c),(d)不同电压下作为发射器的光电子芯片的3 dB带宽

    Figure 12.  (a) Visible light communication test system of optoelectronic chip as transmitter, signal waveform (b) and eye diagram (c) of optoelectronic chip as transmitter at 25 Mbps, (d) 3 dB bandwidth of optoelectronic chip as transmitter with different bias voltage.

    图 13  (a) 同时作为发射器和接收器的光电子芯片的可见光通信测试系统、作为收发一体终端的光电子芯片在5Kbps传输速率下的收发信号波形(b)和眼图(c)

    Figure 13.  (a) Visible light communication test system of the optoelectronic chip as transceiver, signal waveform (b) and eye diagram (c) at 5Kbps transmission rate.

  • [1] SCHWEIKER M, AMPATZ E, ANDARGIE M S, et al. Review of multi-domain approaches to indoor environmental perception and behaviour[J]. Building and Environment, 2020, 176: 106804. doi: 10.1016/j.buildenv.2020.106804
    [2] 陈熙霖, 胡事民, 孙立峰. 面向真实世界的智能感知与交互[J]. 中国科学:信息科学,2016,46(8):969-981. doi: 10.1360/N112016-00072

    CHEN X L, HU SH M, SUN L F. Towards real world perception and interaction[J]. SCIENTIA SINICA Informationis, 2016, 46(8): 969-981. (in Chinese) doi: 10.1360/N112016-00072
    [3] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624.

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese)
    [4] 张爽, 朱万彬, 李健, 等. 激光位移传感器传感探头微小型光学系统设计[J]. 中国光学,2018,11(6):1001-1010. doi: 10.3788/co.20181106.1001

    ZHANG SH, ZHU W B, LI J, et al. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics, 2018, 11(6): 1001-1010. (in Chinese) doi: 10.3788/co.20181106.1001
    [5] SASI G. Motion detection using passive infrared sensor using IoT[J]. Journal of Physics:Conference Series, 2021, 1717: 012067. doi: 10.1088/1742-6596/1717/1/012067
    [6] SINGH P, CHAULYA S K, SINGH V K, et al. . Motion detection and tracking using microwave sensor for eliminating illegal mine activities[C]. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, 2018: 1-5.
    [7] HE J, HUANG ZH, YU K. High-accuracy scheme based on a look-up table for motion detection in an optical camera communication system[J]. Optics Express, 2020, 28(7): 10270-10279. doi: 10.1364/OE.389107
    [8] PARK S T, LEE J G. Improved Kalman filter design for three-dimensional radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 727-739. doi: 10.1109/7.937485
    [9] ACKERMANN F. Airborne laser scanning—present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 64-67. doi: 10.1016/S0924-2716(99)00009-X
    [10] 邓绮雯. 免成像快速运动物体探测与三维追踪[D]. 广州: 暨南大学, 2021.

    DENG Q W. Imaging-free fast-moving object detection and 3-D tracking[D]. Guangzhou: Jinan University, 2021. (in Chinese)
    [11] FILATOV A, RYKOV A, MURASHKIN V. Any motion detector: learning class-agnostic scene dynamics from a sequence of LiDAR point clouds[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020: 9498-9504.
    [12] ABUELLA H, MIRAMIRKHANI F, EKIN S, et al. ViLDAR—visible light sensing-based speed estimation using vehicle headlamps[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10406-10417. doi: 10.1109/TVT.2019.2941705
    [13] SEWAIWAR A, TIWARI S V, CHUNG Y H. Visible light communication based motion detection[J]. Optics Express, 2015, 23(14): 18769-18776. doi: 10.1364/OE.23.018769
    [14] SAWAKI N, HONDA Y. Semi-polar GaN LEDs on Si substrate[J]. Science China Technological Sciences, 2011, 54(1): 38-41. doi: 10.1007/s11431-010-4182-2
    [15] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043
    [16] CHEN L, WU Y P, LI K H. Monolithic InGaN/GaN photonic chips for heart pulse monitoring[J]. Optics Letters, 2020, 45(18): 4992-4995. doi: 10.1364/OL.400733
    [17] YU H M, SUN A F, LIU Y Q, et al. Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection[J]. Sensors and Actuators B:Chemical, 2021, 346: 130488. doi: 10.1016/j.snb.2021.130488
    [18] ZHANG SH, SHI ZH, YUAN J L, et al. Membrane light-emitting diode flow sensor[J]. Advanced Materials Technologies, 2018, 3(3): 1700285. doi: 10.1002/admt.201700285
    [19] 王永进, 尹清溪, 叶子琪, 等. 可见光通信感知一体化芯片及关键技术[J]. 电子与信息学报,2022,44(8):2725-2729. doi: 10.11999/JEIT211559

    WANG Y J, YIN Q X, YE Z Q, et al. Chip and its key technology for monolithically integrated visible light communication and sensing[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2725-2729. (in Chinese) doi: 10.11999/JEIT211559
  • 加载中
图(13)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  23
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 录用日期:  2023-04-24
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回