Integrated nitride optoelectronic chip for motion detection and visible light communication
-
摘要:
自然界中物体运动无处不在,随着智能汽车、6G移动通信的高速发展,对通信和运动探测传感融合的高集成度通感一体器件的需求日益增加。本文基于氮化镓多量子阱结构发光和探测并存的特点,提出了一种基于蓝宝石衬底外延生长氮化镓多量子阱材料的集成式光电子芯片,该芯片具有灵敏的运动探测功能及可见光通信功能。该光电子芯片的发射器向运动的目标物体发射蓝光波段可见光信号,经目标物体运动调制的可见光信号反射回光电子芯片的接收器部分,激发变化的光电流。分析接收器光电流变化,可探测以不同速度旋转的目标物体的运动情况,光电流曲线变化周期与目标物体旋转周期一致。本文还研究了光电子芯片的各项光电指标及可见光通信性能,该芯片可用作可见光通信系统收发终端,可以处理和传输芯片采集到的运动探测信号。基于氮化镓多量子阱材料的光电子芯片在低成本、低功耗、高集成度的光学运动探测领域提供了一条很有前途的途径,是一种具有实用价值的高集成度通感一体终端器件。
Abstract:The motion of objects is everywhere in nature. With the development of smart vehicle and 6G mobile communications, the demand for highly integrated integrated sensing and communication (ISAC) devices withcommunication and motion sensing is increasing. Based on the coexistence of luminescence and detection characteristics of GaN multiple quantum wells, an optoelectronic chip based on GaN on sapphire substrate is proposed in this paper. This chip has sensitive motion detection function and visible light communication function.The transmitter of the chip emits visible light in blue band to the moving target object. The visible light signal modulated by the motion of the target object is reflected back to the receiver of the chip to stimulate the changing photocurrent. By analyzing the changing photocurrent, the motion of the target object rotating at different speeds can be detected. The change period of the photocurrent curve is consistent with the rotation period of the target object. This paper also studies the visible light communication performance of the optoelectronic chip. The optoelectronic chip can be used as a visible light communication transceiver terminal, can also process and transmit the motion detection signals collected by the chip. The optoelectronic chip based on GaN multi-quantum wells provides a promising way in the field of low-cost, low-power, highly integrated optical motion sensing applications. It is a highly integrated ISAC terminal device with significant value.
-
图 4 (a) 光电子芯片的整体光镜图,(b) 发射/接收区域光镜图,(c)DBR层电子显微镜图,(d)单个发射器/接收器的局部放大光镜图
Figure 4. (a) Optical microscope image of optoelectronic chip, (b) optical microscope image of transmitting / receiving region, (c) SEM image of DBR layer, (d) the local magnification light optical microscope image of a single transmitter/receiver
图 12 (a)作为发射器的光电子芯片的可见光通信测试系统,作为发射器的光电子芯片在25 Mbps传输速率下的收发信号波形(b)和眼图(c),(d)不同电压下作为发射器的光电子芯片的3 dB带宽
Figure 12. (a) Visible light communication test system of optoelectronic chip as transmitter, signal waveform (b) and eye diagram (c) of optoelectronic chip as transmitter at 25 Mbps, (d) 3 dB bandwidth of optoelectronic chip as transmitter with different bias voltage.
-
[1] SCHWEIKER M, AMPATZ E, ANDARGIE M S, et al. Review of multi-domain approaches to indoor environmental perception and behaviour[J]. Building and Environment, 2020, 176: 106804. doi: 10.1016/j.buildenv.2020.106804 [2] 陈熙霖, 胡事民, 孙立峰. 面向真实世界的智能感知与交互[J]. 中国科学:信息科学,2016,46(8):969-981. doi: 10.1360/N112016-00072CHEN X L, HU SH M, SUN L F. Towards real world perception and interaction[J]. SCIENTIA SINICA Informationis, 2016, 46(8): 969-981. (in Chinese) doi: 10.1360/N112016-00072 [3] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624.LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese) [4] 张爽, 朱万彬, 李健, 等. 激光位移传感器传感探头微小型光学系统设计[J]. 中国光学,2018,11(6):1001-1010. doi: 10.3788/co.20181106.1001ZHANG SH, ZHU W B, LI J, et al. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics, 2018, 11(6): 1001-1010. (in Chinese) doi: 10.3788/co.20181106.1001 [5] SASI G. Motion detection using passive infrared sensor using IoT[J]. Journal of Physics:Conference Series, 2021, 1717: 012067. doi: 10.1088/1742-6596/1717/1/012067 [6] SINGH P, CHAULYA S K, SINGH V K, et al. . Motion detection and tracking using microwave sensor for eliminating illegal mine activities[C]. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, 2018: 1-5. [7] HE J, HUANG ZH, YU K. High-accuracy scheme based on a look-up table for motion detection in an optical camera communication system[J]. Optics Express, 2020, 28(7): 10270-10279. doi: 10.1364/OE.389107 [8] PARK S T, LEE J G. Improved Kalman filter design for three-dimensional radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 727-739. doi: 10.1109/7.937485 [9] ACKERMANN F. Airborne laser scanning—present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 64-67. doi: 10.1016/S0924-2716(99)00009-X [10] 邓绮雯. 免成像快速运动物体探测与三维追踪[D]. 广州: 暨南大学, 2021.DENG Q W. Imaging-free fast-moving object detection and 3-D tracking[D]. Guangzhou: Jinan University, 2021. (in Chinese) [11] FILATOV A, RYKOV A, MURASHKIN V. Any motion detector: learning class-agnostic scene dynamics from a sequence of LiDAR point clouds[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020: 9498-9504. [12] ABUELLA H, MIRAMIRKHANI F, EKIN S, et al. ViLDAR—visible light sensing-based speed estimation using vehicle headlamps[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10406-10417. doi: 10.1109/TVT.2019.2941705 [13] SEWAIWAR A, TIWARI S V, CHUNG Y H. Visible light communication based motion detection[J]. Optics Express, 2015, 23(14): 18769-18776. doi: 10.1364/OE.23.018769 [14] SAWAKI N, HONDA Y. Semi-polar GaN LEDs on Si substrate[J]. Science China Technological Sciences, 2011, 54(1): 38-41. doi: 10.1007/s11431-010-4182-2 [15] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043 [16] CHEN L, WU Y P, LI K H. Monolithic InGaN/GaN photonic chips for heart pulse monitoring[J]. Optics Letters, 2020, 45(18): 4992-4995. doi: 10.1364/OL.400733 [17] YU H M, SUN A F, LIU Y Q, et al. Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection[J]. Sensors and Actuators B:Chemical, 2021, 346: 130488. doi: 10.1016/j.snb.2021.130488 [18] ZHANG SH, SHI ZH, YUAN J L, et al. Membrane light-emitting diode flow sensor[J]. Advanced Materials Technologies, 2018, 3(3): 1700285. doi: 10.1002/admt.201700285 [19] 王永进, 尹清溪, 叶子琪, 等. 可见光通信感知一体化芯片及关键技术[J]. 电子与信息学报,2022,44(8):2725-2729. doi: 10.11999/JEIT211559WANG Y J, YIN Q X, YE Z Q, et al. Chip and its key technology for monolithically integrated visible light communication and sensing[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2725-2729. (in Chinese) doi: 10.11999/JEIT211559 -