留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated Nitride optoelectronic chip for motion detection and visible light communication

FENG Xiao-xiao HAN Ming-yu CHEN Mei-peng FANG Qian WANG Yong-jin LI Xin

冯萧萧, 韩明宇, 陈美鹏, 方倩, 王永进, 李欣. 运动探测及可见光通信一体化氮化物光电子芯片[J]. 中国光学(中英文), 2023, 16(5): 1257-1272. doi: 10.37188/CO.2023-0028
引用本文: 冯萧萧, 韩明宇, 陈美鹏, 方倩, 王永进, 李欣. 运动探测及可见光通信一体化氮化物光电子芯片[J]. 中国光学(中英文), 2023, 16(5): 1257-1272. doi: 10.37188/CO.2023-0028
FENG Xiao-xiao, HAN Ming-yu, CHEN Mei-peng, FANG Qian, WANG Yong-jin, LI Xin. Integrated Nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics, 2023, 16(5): 1257-1272. doi: 10.37188/CO.2023-0028
Citation: FENG Xiao-xiao, HAN Ming-yu, CHEN Mei-peng, FANG Qian, WANG Yong-jin, LI Xin. Integrated Nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics, 2023, 16(5): 1257-1272. doi: 10.37188/CO.2023-0028

运动探测及可见光通信一体化氮化物光电子芯片

详细信息
  • 中图分类号: TN256

Integrated Nitride optoelectronic chip for motion detection and visible light communication

doi: 10.37188/CO.2023-0028
Funds: Supported by China Postdoctoral Science Foundation Funded Project (No. 2018M640508); Talent Program of Nanjing University of Posts and Telecommunications (No. 1311); Project Funded by Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education (No. JZNY202109)
More Information
    Author Bio:

    FENG Xiao-xiao (1999—), female, born in Xuzhou, Jiangsu Province. She received her bachelor's degree from Jinling University of Science and Technology in 2021, and is now a master's candidate in the School of Communication and Information Engineering of Nanjing University of Posts and Telecommunications. She mainly engages in research on Group III nitride optoelectronic devices. E-mail: 1222014634@njupt.edu.cn

    LI Xin (1984—), female, born in Sanyuan, Shannxi Province, received her doctor degree from the Xi’an Jiaotong University in 2013. She is currently an associate professor in the School of Communication and Information Engineering of Nanjing University of Posts and Telecommunications, mainly engaged in the research of silicon-based GaN optoelectronic devices. E-mail: lixin1984@njupt.edu.cn

    Corresponding author: lixin1984@njupt.edu.cn
  • 摘要:

    在自然界中,物体运动无处不在,随着智能汽车、6G移动通信的高速发展,对通信和运动探测传感融合的高集成度通感一体器件的需求日益增加。本文基于氮化镓多量子阱结构发光和探测并存的特点,提出了一种基于蓝宝石衬底外延生长氮化镓多量子阱材料的集成式光电子芯片,该芯片具有灵敏的运动探测功能及可见光通信功能。该光电子芯片发射器向运动的目标物体发射蓝光波段可见光信号,经目标物体运动调制的可见光信号反射回光电子芯片的接收器部分,激发变化的光电流。通过分析接收器的光电流变化,可探测以不同速度旋转的目标物体的运动情况,光电流曲线变化周期与目标物体旋转周期一致。本文还研究了光电子芯片的各项光电指标及可见光通信性能,该芯片可用作可见光通信系统的收发终端,可以处理和传输芯片采集到的运动探测信号。基于氮化镓多量子阱材料的光电子芯片是一种具有实用价值的高集成度通感一体终端器件。

     

  • 图 1  (a)可实现光电/电光信号双向转换带有多量子阱结构的GaN材料;(b) III族氮化物多量子阱材料的分层结构

    Figure 1.  (a) GaN materials with multiple quantum wells can realize the bi-directional conversion of optoelectronic/electro-optic signals; (b) layered structure of III-nitride materials with multiple quantum wells

    图 2  (a) III族氮化物光电子芯片示意图及其(b)运动探测系统示意图

    Figure 2.  (a) Schematic diagram of III-nitride optoelectronic chip and its (b) schematic diagram of motion detection system

    图 3  III族氮化物光电子芯片的加工流程图

    Figure 3.  Fabrication process of III-nitride optoelectronic chip

    图 4  光电子芯片形貌图。(a)光电子芯片的整体光镜图;(b)发射/接收区域光镜图;(c) DBR层电子显微镜图;(d)单个发射器/接收器的局部放大光镜图

    Figure 4.  Morphological images of optoelectronic chip. (a) Overall optical microscope image of optoelectronic chip; (b) optical microscope image of transmitting/receiving region; (c) SEM image of DBR layer; (d) enlarged optical microscope image of a single transmitter/receiver

    图 5  光电芯片电性能测试结果。(a)发射器/接收器的电流-电压(I-V)曲线;(b)电容-电压(C-V)曲线

    Figure 5.  Electrical characteristics test results. (a) Current-voltage curve of transmitter/receiver; (b) capacitance-voltage curve of transmitter/receiver

    图 6  光电子芯片发射器的电致发光(EL)谱和接收器的探测谱

    Figure 6.  Electroluminescence (EL) spectrum of transmitter and spectral responsivity of receiver

    图 7  注入不同电流的发射器发光图片

    Figure 7.  Luminescence photographs of transmitter with different injected currents

    图 8  光电子芯片的运动探测系统示意图

    Figure 8.  Schematic diagram of motion detection system of optoelectronic chip

    图 9  发射器偏压为2.9 V时,不同转速反射镜运动下接受器的探测光电流

    Figure 9.  Detected photocurrent of the receiver from the reflector moving at different rotating speeds when the transmitter is applied 2.9 V bias voltage

    图 10  反射镜的运动转速为200 rpm,发射器偏压分别设置为2.7 V、2.8 V、2.9 V时接收器的探测光电流

    Figure 10.  Detected photocurrent of the receiver under 200 rpm, rotating speed of mirror when the bias voltages applied to the transmitter are set as 2.7 V, 2.8 V, 2.9 V

    图 11  (a)变速电机和(b)变速运动探测的光电流曲线

    Figure 11.  (a) Variable speed motor and (b) photocurrent curve of variable speed motion detection

    图 12  (a)作为发射器的光电子芯片的可见光通信测试系统。作为发射器的光电子芯片在25 Mbps传输速率下的收发信号波形(b)和眼图(c),以及(d)不同电压下作为发射器的光电子芯片3 dB带宽

    Figure 12.  (a) Visible light communication test system of optoelectronic chip as a transmitter. Signal waveforms (b) and eye diagram (c) of optoelectronic chip as a transmitter at 25 Mbps. (d) 3 dB bandwidth of optoelectronic chip as a transmitter at different bias voltages

    图 13  (a) 同时作为发射器和接收器的光电子芯片的可见光通信测试系统。作为收发一体终端的光电子芯片在5 Kbps传输速率下的收发信号波形(b)和眼图(c)

    Figure 13.  (a) Visible light communication test system of the optoelectronic chip as a transceiver. (b) Signal waveform and (c) eye diagram at 5 Kbps transmission rate

  • [1] SCHWEIKER M, AMPATZ E, ANDARGIE M S, et al. Review of multi-domain approaches to indoor environmental perception and behaviour[J]. Building and Environment, 2020, 176: 106804. doi: 10.1016/j.buildenv.2020.106804
    [2] CHEN X L, HU SH M, SUN L F. Towards real world perception and interaction[J]. Scientia Sinica Informationis, 2016, 46(8): 969-981. doi: 10.1360/N112016-00072
    [3] LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624.
    [4] ZHANG SH, ZHU W B, LI J, et al. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics, 2018, 11(6): 1001-1010. doi: 10.3788/co.20181106.1001
    [5] SASI G. Motion detection using passive infrared sensor using IoT[J]. Journal of Physics:Conference Series, 2021, 1717: 012067. doi: 10.1088/1742-6596/1717/1/012067
    [6] SINGH P, CHAULYA S K, SINGH V K, et al. Motion detection and tracking using microwave sensor for eliminating illegal mine activities[C]. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, 2018: 1-5.
    [7] HE J, HUANG ZH, YU K. High-accuracy scheme based on a look-up table for motion detection in an optical camera communication system[J]. Optics Express, 2020, 28(7): 10270-10279. doi: 10.1364/OE.389107
    [8] PARK S T, LEE J G. Improved Kalman filter design for three-dimensional radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 727-739. doi: 10.1109/7.937485
    [9] ACKERMANN F. Airborne laser scanning—present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 64-67. doi: 10.1016/S0924-2716(99)00009-X
    [10] 邓绮雯. 免成像快速运动物体探测与三维追踪[D]. 广州: 暨南大学, 2021.

    DENG Q W. Imaging-free fast-moving object detection and 3-D tracking[D]. Guangzhou: Jinan University, 2021. (in Chinese)
    [11] FILATOV A, RYKOV A, MURASHKIN V. Any motion detector: learning class-agnostic scene dynamics from a sequence of LiDAR point clouds[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020: 9498-9504.
    [12] ABUELLA H, MIRAMIRKHANI F, EKIN S, et al. ViLDAR—visible light sensing-based speed estimation using vehicle headlamps[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10406-10417. doi: 10.1109/TVT.2019.2941705
    [13] SEWAIWAR A, TIWARI S V, CHUNG Y H. Visible light communication based motion detection[J]. Optics Express, 2015, 23(14): 18769-18776. doi: 10.1364/OE.23.018769
    [14] SAWAKI N, HONDA Y. Semi-polar GaN LEDs on Si substrate[J]. Science China Technological Sciences, 2011, 54(1): 38-41. doi: 10.1007/s11431-010-4182-2
    [15] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043
    [16] CHEN L, WU Y P, LI K H. Monolithic InGaN/GaN photonic chips for heart pulse monitoring[J]. Optics Letters, 2020, 45(18): 4992-4995. doi: 10.1364/OL.400733
    [17] YU H M, SUN A F, LIU Y Q, et al. Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection[J]. Sensors and Actuators B:Chemical, 2021, 346: 130488. doi: 10.1016/j.snb.2021.130488
    [18] ZHANG SH, SHI ZH, YUAN J L, et al. Membrane light-emitting diode flow sensor[J]. Advanced Materials Technologies, 2018, 3(3): 1700285. doi: 10.1002/admt.201700285
    [19] WANG Y J, YIN Q X, YE Z Q, et al. Chip and its key technology for monolithically integrated visible light communication and sensing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2725-2729. doi: 10.11999/JEIT211559
  • 加载中
图(13)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  259
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-14
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回