留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

折反式变形光学系统设计

吴庆 史广维 张建萍 赵尚男 张新

吴庆, 史广维, 张建萍, 赵尚男, 张新. 折反式变形光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1376-1383. doi: 10.37188/CO.2023-0035
引用本文: 吴庆, 史广维, 张建萍, 赵尚男, 张新. 折反式变形光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1376-1383. doi: 10.37188/CO.2023-0035
WU Qing, SHI Guang-wei, ZHANG Jian-ping, ZHAO Shang-nan, ZHANG Xin. Design of catadioptric anamorphic optical system[J]. Chinese Optics, 2023, 16(6): 1376-1383. doi: 10.37188/CO.2023-0035
Citation: WU Qing, SHI Guang-wei, ZHANG Jian-ping, ZHAO Shang-nan, ZHANG Xin. Design of catadioptric anamorphic optical system[J]. Chinese Optics, 2023, 16(6): 1376-1383. doi: 10.37188/CO.2023-0035

折反式变形光学系统设计

基金项目: 国家自然科学基金青年科学基金项目(No. 62005271);国家基础科学公共科学数据中心“光学技术数据库”(No. NBSDC-DB-02)
详细信息
    作者简介:

    吴 庆(1998—),男,四川凉山人,硕士研究生,2021 年于天津大学获得学士学位,主要从事光学系统设计理论与方法研究。E-mail:wuqing21@mails.ucas.ac.cn

    张建萍(1974—),女,黑龙江宝清人,学士,副研究员,主要研究方向光学系统设计理论与方法研究。E-mail:zhjpy@ciomp.ac.cn

  • 中图分类号: O439

Design of catadioptric anamorphic optical system

Funds: Supported by Youth Project of National Natural Science Foundation of China (No. 62005271); “Optical Technology Database” in National Basic Science Data Center (No. NBSDC-DB-02)
More Information
  • 摘要:

    变形光学系统具有双平面对称性,其在两个对称面内的焦距不同。利用变形光学系统能够在使用常规尺寸传感器的情况下获得更宽的视场。本文根据变形光学系统的一阶像差特性,提出了一种设计折反式变形光学系统的方法。使用双锥面(Biconic Surface)面型设计了一个折反式变形光学系统。系统在${{XOZ}}$面内的焦距为500 mm,在${{YOZ}}$对称面内的焦距为1000 mm。系统F-number为10,全视场角为1°×1°。系统在80 lp/mm处的全视场调制传递函数均值高于0.3。系统整体结构紧凑,成像质量良好。

     

  • 图 1  双曲率表面示意图

    Figure 1.  Schematic diagram of double curvature surface

    图 2  变形光学系统轴上点波前图

    Figure 2.  Anamorphic optical system on-axis wavefront map

    图 3  光学系统设计路线

    Figure 3.  Design route of optical system

    图 4  光学系统初始结构图

    Figure 4.  Schematic diagram of the initial structure of the optical system

    图 5  R-C光学系统结构

    Figure 5.  Structure of R-C optical system

    图 6  集成系统等轴侧视图

    Figure 6.  Isometric side view of the integrated system

    图 7  集成系统点列图

    Figure 7.  Spot diagram of the integrated system

    图 8  集成系统MTF曲线

    Figure 8.  MTF curve of the integrated system

    图 9  (a) YZ平面二维结构图及(b)XZ平面二维结构图

    Figure 9.  2D layouts in (a) YZ plane and (b) XZ plane

    图 10  系统成像模拟 。(a)源图像 ;(b)模拟图像

    Figure 10.  Imaging simulation of the system. (a) Source image; (b) simulated image

    图 11  光学系统的(a)场曲;(b)网格畸变;(c)最终系统点列图;(d) 最终系统MTF曲线

    Figure 11.  (a) Field curve; (b) grid distortion; (c) spot diagram; (d) MTF curve of the designed optical system

    表  1  变形光学系统一阶像差

    Table  1.   Primary aberration of anamorphic optical system

    TermPolynomialAberration name
    1${D_1}\rho _x^4$X-Spherical aberration
    2${D_2}\rho _y^4$Y-Spherical aberration
    3${D_3}\rho _x^2\rho _y^2$SKEW-Spherical aberration
    4${D_4}{H_x}\rho _x^3$X-Coma
    5${D_5}{H_y}\rho _x^2{\rho _y}$SKEW-Coma
    6${D_6}{H_x}{\rho _x}\rho _y^2$SKEW-Coma
    7${D_7}{H_y}\rho _y^3$Y-Coma
    8${D_8}H_x^2\rho _x^2$X-Astigmatism & FC
    9${D_9}H_y^2\rho _y^2$Y-Astigmatism & FC
    10${D_{10}}H_y^2\rho _x^2$SKEW-Astigmatism & FC
    11${D_{11}}H_x^2\rho _y^2$SKEW-Astigmatism & FC
    12${D_{12}}{H_x}{H_y}{\rho _x}{\rho _y}$SKEW-Astigmatism & FC
    13${D_{13}}H_x^3{\rho _x}$X-Distortion
    14${D_{14}}H_y^3{\rho _y}$Y-Distortion
    15${D_{15}}{H_x}H_y^2{\rho _x}$SKEW-Distortion
    16${D_{16}}H_x^2{H_y}{\rho _y}$SKEW-Distortion
    下载: 导出CSV

    表  2  分系统参数

    Table  2.   Subsystem parameters

    参数分系统一分系统二
    系统孔径$/{\text{mm}}$50100
    视场角$2\omega /(^\circ )$11
    系统焦距$/{\text{mm}}$5001000
    系统 ${\text{F-number}}$1010
    下载: 导出CSV

    表  3  集成系统参数

    Table  3.   Parameters of integrated system

    参数X-Z symmetric planeY-Z symmetric plane
    系统孔径$/{\text{mm}}$50100
    视场角$2\omega /(^\circ )$11
    焦距$/{\text{mm}}$5001000
    ${\text{F - number}}$1010
    下载: 导出CSV

    表  4  光学系统结构参数表

    Table  4.   Configuration parameters of the optical system

    SurfaceTypeThicknessMaterialCxCykxky
    1Biconic surface−104.117mirror−0.03431−0.03704−1.159−1.139
    2Biconic surface112.651mirror−0.08445−0.012−5.249−3.948
    3Biconic surface5.213ZF500.0410.032−2.747−4.336
    4Biconic surface4.1230.0480.011−1.941−86.885
    5Biconic surface6.000H-BAK30.016−0.10325.940−1.823
    6Biconic surface12.9520.0320.0442.986−11.632
    下载: 导出CSV
  • [1] HENRI C. Anamorphotic lens system and method of making the same: US, 1962892A[P]. 1934-06-12.
    [2] MIGURA S, KNEER B, NEUMANN J T, et al. Anamorphic high-NA EUV lithography optics[J]. Proceedings of SPIE, 2015, 9661: 96610T. doi: 10.1117/12.2196393
    [3] 钟志坚, 李琛毅, 李世光, 等. 先进光刻中的聚焦控制预算(I)-光路部分[J]. 中国光学,2021,14(5):1104-1119. doi: 10.37188/CO.2021-0033

    ZHONG ZH J, LI CH Y, LI SH G, et al. Budget analysis of focus control in advanced lithography (I) -optical path[J]. Chinese Optics, 2021, 14(5): 1104-1119. (in Chinese) doi: 10.37188/CO.2021-0033
    [4] TAN Q W, GUO Y D, LI Y, et al. Primary aberration optimization for double-plane symmetric beam shaping systems using a pair of curved reference surfaces[J]. Optics Express, 2022, 30(5): 7664-7676. doi: 10.1364/OE.449222
    [5] KASHIMA S, HAZUMI M, IMADA H, et al. Wide field-of-view crossed Dragone optical system using anamorphic aspherical surfaces[J]. Applied Optics, 2018, 57(15): 4171-4179. doi: 10.1364/AO.57.004171
    [6] DEHOOG E A. Anamorphic zoom lens based on rotating cylindrical lenses[J]. Optics Express, 2021, 29(8): 12206-12214. doi: 10.1364/OE.422097
    [7] XU CH, SONG W T, WANG Y T. Design of a miniature anamorphic lens with a freeform front group and an aspheric rear group[J]. Optical Engineering, 2021, 60(6): 065104.
    [8] WYNNE C G. The primary aberrations of anamorphotic lens systems[J]. Proceedings of the Physical Society. Section B, 1954, 67(7): 529-537. doi: 10.1088/0370-1301/67/7/303
    [9] ROGERS J R. Aberrations of unobscured reflective optical systems[D]. Tucson: University of Arizona, 1983.
    [10] ZHANG J K, CHEN X B, LI F J, et al. Paraxial lens design of anamorphic lenses with a fixed anamorphic ratio[J]. OSA Continuum, 2019, 2(4): 1430-1454. doi: 10.1364/OSAC.2.001430
    [11] YUAN SH, SASIAN J. Aberrations of anamorphic optical systems. I: the first-order foundation and method for deriving the anamorphic primary aberration coefficients[J]. Applied Optics, 2009, 48(13): 2574-2584. doi: 10.1364/AO.48.002574
    [12] YUAN SH, SASIAN J. Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems[J]. Applied Optics, 2009, 48(15): 2836-2841. doi: 10.1364/AO.48.002836
    [13] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    PAN J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese)
    [14] 朱浩, 崔庆丰, 朴明旭. 无遮拦三反射镜变形光学系统设计[J]. 光学学报,2014,34(12):1222005. doi: 10.3788/AOS201434.1222005

    ZHU H, CUI Q F, PIAO M X. Design of unobscured three-mirror anamorphic optical systems[J]. Acta Optica Sinica, 2014, 34(12): 1222005. (in Chinese) doi: 10.3788/AOS201434.1222005
    [15] YUAN SH. Aberrations of anamorphic optical systems[D]. Tucson: University of Arizona, 2008.
    [16] 白晓泉, 郭良, 马宏财, 等. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. 中国光学(中英文),2022,15(4):747-760. doi: 10.37188/CO.2021-0164

    BAI X Q, GUO L, MA H C, et al. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J]. Chinese Optics, 2022, 15(4): 747-760. (in Chinese) doi: 10.37188/CO.2021-0164
    [17] 孟庆宇, 秦子长, 任成明, 等. 光学系统降敏设计方法综述[J]. 中国光学(中英文),2022,15(5):863-877. doi: 10.37188/CO.2022-0096

    MENG Q Y, QIN Z CH, REN CH M, et al. Review of optical systems′ desensitization design methods[J]. Chinese Optics, 2022, 15(5): 863-877. (in Chinese) doi: 10.37188/CO.2022-0096
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  207
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-07-18

目录

    /

    返回文章
    返回