留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分光比可调的光功率分束器的设计

谢锋 朱硕隆 张振荣

谢锋, 朱硕隆, 张振荣. 分光比可调的光功率分束器的设计[J]. 中国光学(中英文), 2023, 16(5): 1121-1128. doi: 10.37188/CO.2023-0038
引用本文: 谢锋, 朱硕隆, 张振荣. 分光比可调的光功率分束器的设计[J]. 中国光学(中英文), 2023, 16(5): 1121-1128. doi: 10.37188/CO.2023-0038
XIE Feng, ZHU Shuo-long, ZHANG Zhen-rong. Design of an optical power splitter with adjustable split ratio[J]. Chinese Optics, 2023, 16(5): 1121-1128. doi: 10.37188/CO.2023-0038
Citation: XIE Feng, ZHU Shuo-long, ZHANG Zhen-rong. Design of an optical power splitter with adjustable split ratio[J]. Chinese Optics, 2023, 16(5): 1121-1128. doi: 10.37188/CO.2023-0038

分光比可调的光功率分束器的设计

基金项目: 国家自然科学基金(No. 12272407,No. 62275269,No. 62275271);国家重点研发计划(No. 2022YFF0706005);粤桂联合科学重点基金(No. 2021GXNSFDA076001);广西重点研发计划(No. AB22080048)
详细信息
    作者简介:

    谢 锋(1989—),男,广西浦北人,硕士研究生,讲师,2015年于广西大学获得硕士学位,主要从事光器件、人工智能方面的研究。E-mail:664019140@qq.com

    张振荣(1976—),男,湖南祁阳人,博士,教授,2005年于新加坡南洋理工大学获得博士学位,主要从事光通信、光器件等方面的研究。E-mail:zzr76@gxu.edu.cn

  • 中图分类号: TN256

Design of an optical power splitter with adjustable split ratio

Funds: Supported by National Natural Science Foundation of China (No. 12272407, No. 62275269, No. 62275271); National Key R & D Program of China (No. 2022YFF0706005); China Guangdong Guangxi Joint Science Key Foundation (No. 2021GXNSFDA076001); KR & DP of Guangxi (No. AB22080048)
More Information
  • 摘要:

    传统的解析理论设计方案存在计算复杂度高、有限解析解、耗时长等问题。为了解决以上问题,在传统的光器件设计基础上,提出一种依据逆向设计方法的分光比可调的光功率分束器方案。在1.92 μm×1.92 μm的紧凑区域内,引入Ge2Sb2Se4Te1(GSST)相变材料改变器件的折射率分布。利用直接二进制搜索算法搜索GSST晶态和非晶态的最优状态分布。设计实现同一种器件结构,分光比可调的T型光功率分束器。仿真分析了器件的初始结构、分光比、相变材料区域状态分布、制造容差以及光场分布。结果表明:分光比分别为1∶1、1.5∶1、2∶1的3种光功率分束器在波长1530 nm−1560 nm之间的最小相对误差分别为0.004%、0.14%和0.22%,在制造容差范围内传输曲线最大波动分别是0.95 dB、1.21 dB、1.18 dB。该分光器结构紧凑,在光通信和信息处理领域有着较大的应用潜力。

     

  • 图 1  算法流程图

    Figure 1.  Algorithm flow chart

    图 2  像素区域的划分及状态图

    Figure 2.  Division and state map of pixel regions

    图 3  器件结构

    Figure 3.  The device structure

    图 4  不同初始结构光功率分束器的光场分布以及初始平面结构

    Figure 4.  Light field distribution and the initial plane structure of optical power splitter with different initial structures

    图 5  不同初始结构的光功率分束器附加损耗曲线

    Figure 5.  Excess loss curves of optical power splitters with different initial structures

    图 6  不同分光比的光功率分束器的GSST状态、光场分布、透射光谱以及分光比曲线图

    Figure 6.  The GSST state, light field distribution, transmission spectrum and splitting ratio curves of optical power splitter with different splitting ratios

    图 7  孔直径在−10 nm至+10 nm变化时的透射光谱响应

    Figure 7.  The simulated transmission spectra varying with the hole diameter changing from −10 nm to 10 nm

    表  1  不同分光比器件的不同端口在不同制造容差下的误差分析表

    Table  1.   The error analysis table of different ports of devices with different split ratios under different manufacturing tolerances

    Split
    ratio
    Max
    absolute error
    Out1(+10)/dB
    Max absolute
    error
    Out2(+10)/dB
    Max absolute
    error
    Out1(−10)/dB
    Max absolute
    error
    Out2(−10)/dB
    1∶10.260.260.930.95
    1.5∶10.611.051.210.53
    2∶10.501.181.160.71
    下载: 导出CSV
  • [1] TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Scientific Reports, 2019, 9(1): 1368. doi: 10.1038/s41598-018-37952-2
    [2] YUAN H, WU J G, ZHANG J P, et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J]. Nanomaterials, 2022, 12(4): 669. doi: 10.3390/nano12040669
    [3] XIE H C, LIU Y J, SUN W Z, et al. Inversely designed 1× 4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics Journal, 2018, 10(4): 2700506.
    [4] 杨知虎, 傅佳慧, 张玉萍, 等. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文),2023,16(4):816-823.

    YANG ZH H, FU J H, ZHANG Y P, et al. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics, 2023, 16(4): 816-823. (in Chinese)
    [5] YUAN H, WANG ZH H, ZHANG J P, et al. Ultra-compact programmable arbitrary power splitter[J]. Proceedings of SPIE, 2021, 12062: 1206207.
    [6] LIU Y J, WANG Z, LIU Y L, et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J]. Journal of Lightwave Technology, 2021, 39(18): 5925-5932. doi: 10.1109/JLT.2021.3092941
    [7] MA H S, YANG J B, HUANG J, et al. Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5 platform[J]. Results in Physics, 2021, 26: 104384. doi: 10.1016/j.rinp.2021.104384
    [8] WANG Q, CHUMAK A V, PIRRO P. Inverse-design magnonic devices[J]. Nature Communications, 2021, 12(1): 2636. doi: 10.1038/s41467-021-22897-4
    [9] XIE H CH, LIU Y J, WANG Y H, et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J]. IEEE Photonics Technology Letters, 2020, 32(6): 341-344. doi: 10.1109/LPT.2020.2975128
    [10] LU L L Z, LIU D M, ZHOU F Y, et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J]. Optics Letters, 2016, 41(21): 5051-5054. doi: 10.1364/OL.41.005051
    [11] 严德贤, 陈欣怡, 封覃银, 等. 二氧化钒辅助的可切换多功能超材料结构研究[J]. 中国光学(中英文),2023,16(3):514-522. doi: 10.37188/CO.2022-0193

    YAN D X, CHEN X Y, FENG Q Y, et al. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. (in Chinese) doi: 10.37188/CO.2022-0193
    [12] 张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快激光嵌套加工方法研究[J]. 中国光学(中英文),2023,16(4):889-903.

    ZHANG X B, HAN W N. Ultrafast laser nested machining method for angle-multiplexed optically encrypted metasurface[J]. Chinese Optics, 2023, 16(4): 889-903. (in Chinese)
    [13] PENG ZH, FENG J B, YUAN H, et al. A non-volatile tunable ultra-compact silicon photonic logic gate[J]. Nanomaterials, 2022, 12(7): 1121. doi: 10.3390/nano12071121
    [14] MA H S, HUANG J, ZHANG K W, et al. Inverse-designed arbitrary-input and ultra-compact 1× N power splitters based on high symmetric structure[J]. Scientific Reports, 2020, 10(1): 11757. doi: 10.1038/s41598-020-68746-0
    [15] ARUNACHALAM M, RAJU S. Power efficient space division multiplexing–wavelength division multiplexing system using multimode EDFA with elevated refractive index profile[J]. International Journal of Communication Systems, 2022, 35(6): e5065.
    [16] FERNÁNDEZ DE CABO R, GONZÁLEZ-ANDRADE D, CHEBEN P, et al. High-performance on-chip silicon beamsplitter based on subwavelength metamaterials for enhanced fabrication tolerance[J]. Nanomaterials, 2021, 11(5): 1304. doi: 10.3390/nano11051304
    [17] LU M J, DENG CH Y, ZHENG P F, et al. Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform[J]. Optics Communications, 2021, 498: 127250. doi: 10.1016/j.optcom.2021.127250
    [18] MISCUGLIO M, MENG J W, YESILIURT O, et al. . Artificial synapse with mnemonic functionality using GSST-based photonic integrated memory[C]. Proceedings of 2020 International Applied Computational Electromagnetics Society Symposium. IEEE, 2020: 1-3.
    [19] ZHANG Y F, CHOU J B, LI J Y, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nature Communications, 2019, 10(1): 4279. doi: 10.1038/s41467-019-12196-4
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  218
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-04-13

目录

    /

    返回文章
    返回