留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹非球面的非零位干涉检测技术

张旭 李世杰 刘丙才 田爱玲 梁海锋 蔡长龙

张旭, 李世杰, 刘丙才, 田爱玲, 梁海锋, 蔡长龙. 凹非球面的非零位干涉检测技术[J]. 中国光学(中英文), 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042
引用本文: 张旭, 李世杰, 刘丙才, 田爱玲, 梁海锋, 蔡长龙. 凹非球面的非零位干涉检测技术[J]. 中国光学(中英文), 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042
ZHANG Xu, LI Shi-jie, LIU Bing-cai, TIAN Ai-ling, LIANG Hai-feng, CAI Chang-long. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042
Citation: ZHANG Xu, LI Shi-jie, LIU Bing-cai, TIAN Ai-ling, LIANG Hai-feng, CAI Chang-long. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042

凹非球面的非零位干涉检测技术

基金项目: 陕西省科技厅资助项目(No. 2022GY-222,No. 2022GY-262);基础科研(No. JCKY2020426B009);“一带一路”外国专家创新人才交流项目(No. DL2022040006L)
详细信息
    作者简介:

    张旭(1998—),女,陕西渭南人,硕士研究生,2019年于西安工业大学获得学士学位,2021年至今于西安工业大学攻读硕士研究生,主要从事光学检测方面的研究。E-mail:zhangxu19982021@163.com

    李世杰(1988—),男,四川广安人,博士,副教授,硕士生导师,2014年于中国科学院光电技术研究所获得博士学位,主要从事先进光学制造技术及先进光学系统研发等方面的研究。E-mail:lishijie@xatu.edu.cn

  • 中图分类号: TN74

A non-null interferometry for concave aspheric surface

Funds: Supported by Department of Science and Technology Project of Shaanxi Province (No. 2022GY-222, No. 2022GY-262); Basic Scientific Research (No. JCKY2020426B009);"The Belt and Road" Foreign Experts Innovative Talent Exchange Project (No. DL2022040006L)
More Information
  • 摘要:

    为了实现凹非球面的快速、高精度与通用化检测,文中提出了一种将非球面当做球面,直接采用干涉仪检测的非零位干涉检测方法,并结合相应的数据处理方法,获得非球面的面形误差检测结果。首先,介绍了该方法的检测原理,建立了回程误差、调整误差的计算与去除模型,研究了面形误差的数据处理方法。然后,以两个不同非球面度的凹非球面为例,对其回程误差和调整误差进行了仿真计算,验证了该方法的有效性。最后,搭建了凹非球面的非零位检测实验装置,成功测量得到其面形误差。通过与自准直零位检测法或LUPHOScan轮廓测量法检测结果对比发现,两种方法测量得到的面形分布和评价指标具有高度一致性,验证了该检测方法的正确性。该检测方法在保证高精度测量的同时兼备一定的通用性与便捷性,为凹非球面的通用化检测提供了一种有效手段。

     

  • 图 1  非零位干涉法直接检测非球面原理示意图

    Figure 1.  Schematic diagram of aspheric surface directly tested by non-null interferometry

    图 2  非零位检测光线追迹模型

    Figure 2.  Ray-tracing model of non-null test

    图 3  调整误差引入的像差。(a)距离引起的离焦;(b)光轴倾斜引起的倾斜误差;(c)偏心引起的彗差

    Figure 3.  Aberration caused by adjustment errors. (a) Distance induced defocusing; (b) tilt error caused by optical axis tilt; (c) coma caused by optical axis offset error

    图 4  非零位检测凹非球面时(a)实验装置及非零位直接检测(b)凹抛物面和(c)凹椭球面的数据

    Figure 4.  (a) The experiment setup of non-null test for concave aspheric; data of (b) concave paraboloid surface and (c) concave ellipsoid surface obtained by non-null direct interferometry

    图 5  非零位检测去除调整误差与回程误差。(a)凹抛物面处理后的面形结果;(b)凹椭球面处理后的面形结果;

    Figure 5.  Non-null test results after removing adjustment error and retrace error. (a)Test results of concave parabolic surface; (b) test results of concave ellipsoid surface

    图 6  凹非球面的对比实验。(a)平面自准直法检测光路图;(b) 自准直法检测凹抛物面的数据;(c) LUPHOScan 轮廓仪测量凹椭球面的数据

    Figure 6.  Comparative experiment on concave aspheric. (a) The optical path diagram of plane autocollimation; (b) testing of concave paraboloid surface by autocollimation; (c) testing of concave ellipsoid surface using LUPHOScan

    表  1  Zernike多项式的项数与像差的对应关系

    Table  1.   Correspondence between the terms of Zernike polynomials and aberrations

    Term Polynomial Meaning
    $ {Z_4} $ $ - 1{\text{ + }}2\left( {{x^2} + {y^2}} \right) $ Power
    $ {Z_7} $ $ \left( { - 2 + 3{x^2} + 3{y^2}} \right)x $ Coma X
    $ {Z_8} $ $ \left( { - 2 + 3{x^2} + 3{y^2}} \right)y $ Coma Y
    $ {Z_9} $ $ 1 - 6\left( {{x^2} + {y^2}} \right) + 6{\left( {{x^2} + {y^2}} \right)^2} $ Primary Spherical
    下载: 导出CSV

    表  2  凹抛物面参数

    Table  2.   Parameters of concave paraboloid surface

    Parameter Value Parameter Value
    Aspheric type Concave paraboloid Maximum sag/mm 1.67
    Diameter/mm 90 Maximum slope/(°) 4.25
    Radius curvature of the vertex/mm 606 Maximum asphericity/μm 0.575
    Conic coefficient K −1 Best radius of the reference sphere/mm 606.835
    下载: 导出CSV

    表  3  凹椭球面参数

    Table  3.   Parameters of concave ellipsoid surface

    Parameter Value Parameter Value
    Aspheric type Concave ellipsoid Maximum sag/mm 2.91
    Diameter/mm 90 Maximum slope/(°) 7.39
    Radius curvature of the vertex/mm 348 Maximum asphericity/μm 2.0154
    Conic coefficient K −0.66 Best radius of the reference sphere/mm 348.9615
    下载: 导出CSV

    表  4  凹抛物面回程误差的仿真计算结果

    Table  4.   Simulation calculation results of retrace error of concave paraboloid surface

    OA/mm $ O P D $ Power item $ Z_{{\mathrm{OPD}}(4)} $ Primary spherical $Z_{\Delta{{\mathrm{OPD}}(9)}}$ Retrace error
    605
    606
    606.835
    607
    608
    下载: 导出CSV

    表  5  凹椭球面回程误差的仿真计算结果

    Table  5.   Simulation calculation results of retrace error of concave ellipsoid surface

    OA/mm $ O P D $ Power item $ Z_{{\mathrm{OPD}}(4)} $ Primary spherical $ Z_{\Delta{{\mathrm{OPD}}(9)}}$ Retrace error
    347
    348
    348.9615
    349
    350
    下载: 导出CSV

    表  6  实验中距离误差引入的离焦误差与去除

    Table  6.   Defocusing error introduced by distance errors in experiments and its removal (nm)

    Detection result Power is adjusted to a minimum Adjust the distance L1 Adjust the distance L2 Adjust the distance L3
    Fringe pattern
    Surface error before removing Power
    PV=639.7608
    RMS=135.4192

    PV=4283.4232
    RMS=1200.4216

    PV=1833.8544
    RMS=515.732

    PV=1999.0152
    RMS=523.3256
    Surface error after removing Power
    PV= 627.1048
    RMS=135.4192

    PV= 654.3152
    RMS=133.5208

    PV=721.392
    RMS=132.888

    PV=656.2136
    RMS=137.3176
    下载: 导出CSV

    表  7  实验中光轴倾斜/偏心误差引入的彗差与去除

    Table  7.   Comet error introduced by optical axis tilt/offset error in experiment and its removal (nm)

    Detection result Coma is adjusted to a minimum Adjust the eccentric θ1 Adjust the eccentric θ2 Adjust the eccentric θ3
    Fringe pattern
    Surface error before removing Coma
    PV=722.6576
    RMS=137.3176

    PV=656.8464
    RMS=133.5208

    PV=641.6592
    RMS=134.7864

    PV=649.2528
    RMS=136.6848
    Surface error after removing Coma
    PV= 510.6696
    RMS=125.2944

    PV= 489.7872
    RMS=123.3960

    PV= 491.0528
    RMS=125.2944

    PV= 488.5216
    RMS=126.5600
    下载: 导出CSV
  • [1] 刘锋伟, 吴永前, 陈强, 等. 大口径光学非球面镜先进制造技术概述[J]. 光电工程,2020,47(10):200203.

    LIU F W, WU Y Q, CHEN Q, et al. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-Electronic Engineering, 2020, 47(10): 200203. (in Chinese)
    [2] 师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.

    SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese)
    [3] GUO H, LI X F, ZHANG X X, et al. Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control[J]. Scientific Reports, 2023, 13(1): 3048. doi: 10.1038/s41598-023-30157-2
    [4] 常军, 张正慧, 王蕊瑞. 特殊光学元件的新型子孔径拼接检测方法研究[J]. 物理学报,2011,60(3):034218. doi: 10.7498/aps.60.034218

    CHANG J, ZHANG ZH H, WANG X R. A new sub-aperture stitching method of measuring special optical element[J]. Acta Physica Sinica, 2011, 60(3): 034218. (in Chinese) doi: 10.7498/aps.60.034218
    [5] 范芯蕊, 刁晓飞, 吴剑威, 等. 高精度轴对称非球面反射镜轮廓测量方法(特邀)[J]. 红外与激光工程,2022,51(9):20220500. doi: 10.3788/IRLA20220500

    FAN X R, DIAO X F, WU J W, et al. High-precision profile measurement method for axisymmetric aspheric mirror ( invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220500. (in Chinese) doi: 10.3788/IRLA20220500
    [6] 冯帅, 常军, 牛亚军, 等. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法[J]. 物理学报,2019,68(11):114201. doi: 10.7498/aps.68.20182253

    FENG SH, CHANG J, NIU Y J, et al. A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path[J]. Acta Physica Sinica, 2019, 68(11): 114201. (in Chinese) doi: 10.7498/aps.68.20182253
    [7] HU P, XIONG X, ZHANG W H, et al. Accurate inner profile measurement of a high aspect ratio aspheric workpiece using a two-probe measuring system[J]. Applied Sciences, 2022, 12(13): 6628. doi: 10.3390/app12136628
    [8] 苏航, 王孝坤, 程强, 等. 子孔径拼接和计算全息混合补偿检测大口径凸非球面(特邀)[J]. 红外与激光工程,2022,51(9):20220576. doi: 10.3788/IRLA20220576

    SU H, WANG X K, CHENG Q, et al. Sub-aperture stiching and CGH mixed compensation for the testing of large convex asphere ( invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220576. (in Chinese) doi: 10.3788/IRLA20220576
    [9] 闫公敬, 张宪忠. 非零位凸非球面子孔径拼接检测技术研究[J]. 中国光学,2018,11(5):798-803. doi: 10.3788/co.20181105.0798

    YAN G J, ZHANG X ZH. Research on non-null convex aspherical sub-aperture stitching detection technology[J]. Chinese Optics, 2018, 11(5): 798-803. (in Chinese) doi: 10.3788/co.20181105.0798
    [10] 王孝坤, 王丽辉, 张学军. 干涉法实时测量浅度非球面技术[J]. 光学 精密工程,2008,16(2):184-189.

    WANG X K, WANG L H, ZHANG X J. Testing of weak aspheric surface by real-time interferometry[J]. Optics and Precision Engineering, 2008, 16(2): 184-189. (in Chinese)
    [11] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi: 10.37188/CO.2021-0143
    [12] 姚劲刚, 张金平, 郑列华, 等. 干涉零位补偿检验研究[J]. 光学学报,2015,35(6):0622003. doi: 10.3788/AOS201535.0622003

    YAO J G, ZHANG J P, ZHENG L H, et al. Study on interference null compensator testing[J]. Acta Optica Sinica, 2015, 35(6): 0622003. (in Chinese) doi: 10.3788/AOS201535.0622003
    [13] ZHANG L, TIAN CH, LIU D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 2014, 53(25): 5755-5762. doi: 10.1364/AO.53.005755
    [14] SHI T, LIU D, ZHOU Y H, et al. Practical retrace error correction in non-null aspheric testing: a comparison[J]. Optics Communications, 2017, 383: 378-385. doi: 10.1016/j.optcom.2016.09.034
    [15] 贾文昕, 韩森, 张凌华, 等. 离轴椭圆柱面镜测量方法及调整误差分析[J]. 光学学报,2021,41(20):2012004. doi: 10.3788/AOS202141.2012004

    JIA W X, HAN S, ZHANG L H, et al. Measurement method and alignment error analysis of off-axis elliptical cylindrical mirror[J]. Acta Optica Sinica, 2021, 41(20): 2012004. (in Chinese) doi: 10.3788/AOS202141.2012004
    [16] 沙定国, 全书学, 朱秋东, 等. 光学非球面度的定义及其准确计算[J]. 光子学报,1995,24(1):91-94.

    SHA D G, QUAN SH X, ZHU Q D, et al. Definition and accurate calculation of optical asphericity[J]. Acta Photonica Sinica, 1995, 24(1): 91-94. (in Chinese)
    [17] 方素平, 小森雅晴, 久保爱三, 等. 适用于精密复杂零件表面形状的干涉测量光学系统的光线追迹方法[J]. 机械工程学报,2009,45(2):170-177. doi: 10.3901/JME.2009.02.170

    FANG S P, KOMORI M, KUBO A, et al. Ray tracing method for optical system of interferometry measurement used for form deviation of precise complex surface of machine parts[J]. Journal of Mechanical Engineering, 2009, 45(2): 170-177. (in Chinese) doi: 10.3901/JME.2009.02.170
    [18] 周龙峰, 张昂, 张俊波, 等. 基于成像清晰度函数的非球面反射镜位置校正实验研究[J]. 物理学报,2016,65(13):139501. doi: 10.7498/aps.65.139501

    ZHOU L F, ZHANG A, ZHANG J B, et al. Experimental research of alignment error correction by aspheric mirror based on the function of imaging quality[J]. Acta Physica Sinica, 2016, 65(13): 139501. (in Chinese) doi: 10.7498/aps.65.139501
    [19] 程德文, 陈海龙, 王涌天, 等. 复杂光学曲面数理描述和设计方法研究[J]. 光学学报,2023,43(8):0822008. doi: 10.3788/AOS221980

    CHENG D W, CHEN H L, WANG Y T, et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822008. (in Chinese) doi: 10.3788/AOS221980
    [20] GU W, SONG W H, WU G F, et al. Model-based multi-fringe interferometry using Zernike polynomials[J]. Optics and Lasers in Engineering, 2018, 105: 198-200. doi: 10.1016/j.optlaseng.2018.01.020
    [21] 郭良贤, 卫俊杰, 唐培. Zernike圆域多项式镜面拟合仿真与精度研究[J]. 光学与光电技术,2018,16(6):56-62.

    GUO L X, WEI J J, TANG P. Fitting simulation and precision of mirror surface with Zernike circular polynomial[J]. Optics & Optoelectronic Technology, 2018, 16(6): 56-62. (in Chinese)
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  121
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-04-14
  • 网络出版日期:  2023-09-26

目录

    /

    返回文章
    返回