留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

产生环形激光的光学系统设计

陈宝华 吴泉英 唐运海 范君柳 陈晓翌 余浩墨 孙毅

陈宝华, 吴泉英, 唐运海, 范君柳, 陈晓翌, 余浩墨, 孙毅. 产生环形激光的光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1365-1375. doi: 10.37188/CO.2023-0045
引用本文: 陈宝华, 吴泉英, 唐运海, 范君柳, 陈晓翌, 余浩墨, 孙毅. 产生环形激光的光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1365-1375. doi: 10.37188/CO.2023-0045
CHEN Bao-hua, WU Quan-ying, TANG Yun-hai, FAN Jun-liu, CHEN Xiao-yi, YU Hao-mo, SUN Yi. Design of an optical system for generating ring-shaped laser beam[J]. Chinese Optics, 2023, 16(6): 1365-1375. doi: 10.37188/CO.2023-0045
Citation: CHEN Bao-hua, WU Quan-ying, TANG Yun-hai, FAN Jun-liu, CHEN Xiao-yi, YU Hao-mo, SUN Yi. Design of an optical system for generating ring-shaped laser beam[J]. Chinese Optics, 2023, 16(6): 1365-1375. doi: 10.37188/CO.2023-0045

产生环形激光的光学系统设计

基金项目: 国家自然科学基金资助项目(No. 62275187,No. 61875145,No. 11804243);江苏省十四五光学工程重点学科项目资助(No. 2021135);苏州市产业前瞻与关键核心技术项目资助(No. SYC2022145);苏州市重点实验室(No. SZS201202)
详细信息
    作者简介:

    陈宝华(1990—),男,江苏泰州人,实验师,2016年于苏州大学获得硕士学位,现为苏州科技大学物理实验中心实验师,主要从事光学仪器加工与检测方面研究。E-mail:chenbaohua@mail.usts.edu.cn

    吴泉英(1965—),女,江苏苏州人,教授,博士生导师,2006年于苏州大学获得博士学位,现为苏州科技大学物理科学与技术学院教授,主要从事光学仪器设计、加工与检测方面研究。E-mail:wqycyh@mail.usts.edu.cn

  • 中图分类号: O439

Design of an optical system for generating ring-shaped laser beam

Funds: Supported by National Natural Science Foundation of China (No. 62275187, No. 61875145, No. 11804243); The Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Suzhou Industrial Outlook and Key Core Technology Project (No. SYC2022145); Suzhou Key Laboratory (No. SZS201202)
More Information
  • 摘要:

    为了产生半径可自由调控的聚焦环形激光且确保离焦后光束强度仍均匀,本文提出一种透射-反射式组合的环形光光学系统设计方法。对于透射式系统,基于等能量分割原理,建立入射光与出射光投射高度的映射函数,优化透镜的各项参数,将入射的高斯光先整形成平顶圆形光,实现光束强度均匀化。反射式系统通过调整焦面环形光直径调控范围、工作距离等参数,结合几何光线追迹原理,计算圆锥反射镜、抛物柱面镜及动镜的各项参数,将平顶圆形光再整形成环形光。实验结果表明:当动镜半顶角为16°时,所设计系统能够实现聚焦环形光半径在15~30 mm范围的自由调控,尺寸误差不超过0.05 mm,离焦后强度均匀度达到84%。该设计方法无需更换系统镜片即可兼顾强度均匀性和尺寸自由度,可操作性好,产生的环形光加工精度和效率更高。

     

  • 图 1  透射-反射式组合的环形光光学系统

    Figure 1.  Transmissive-reflective combined ring-shaped beam optical system

    图 2  透射式平顶光束整形系统

    Figure 2.  Transmissive flat-top beam shaping system

    图 3  不同切趾因子的(a)高斯光强分布曲线及(b)投射高度关系曲线

    Figure 3.  (a) Gaussian light intensity distribution curves and (b) projection height curve under different apodization factors

    图 4  透射式平顶光束整形系统设计图及设计结果

    Figure 4.  Transmission flat-topped beam shaping system and the results of the system

    图 5  反射式聚焦环形光整形系统

    Figure 5.  Reflective focusing ring-shaped laser beam system

    图 6  半顶角θ与移动距离L和焦面补偿距离ΔZ之间的关系曲线图

    Figure 6.  Relationship between the half vertex angle θ, and the distance L, the focal compensation distance ΔZ

    图 7  动镜是内圆锥时的反射式环形光系统及焊接应用

    Figure 7.  The optical system and welding application when the moving mirror is an inner conical mirror

    图 8  透射-反射式光学系统及焦面环形光尺寸参数

    Figure 8.  Transmission-reflection optical system and ring-shaped laser beam size parameters of focal plane

    图 9  平顶光整形前后的离焦光强分布图

    Figure 9.  Defocused light intensity distribution maps before and after flat top beam shaping

    图 10  镜片实物图

    Figure 10.  Diagram of lens components

    图 11  实验光路图

    Figure 11.  Experimental laser beam path diagram

    图 12  聚焦环形光半径调节示意图及实测与理论尺寸对比曲线

    Figure 12.  Adjustment diagram of focused ring-shaped laser beam radius and comparison curve between theoretical and actual measurement values

    图 13  环形光的离焦结果

    Figure 13.  Defocusing results of ring-shaped laser beam

    图 14  环形光系统中的平行平板玻璃透镜

    Figure 14.  Parallel flat lens in the ring-shaped laser beam system

    表  1  初始条件

    Table  1.   Initial condition

    入瞳半径
    d/mm
    波长
    λ/nm
    D
    /mm
    S
    /mm
    工作距离
    /mm
    均匀度
    /%
    数值12632.83015150~170>80%
    下载: 导出CSV

    表  2  透镜参数

    Table  2.   Lens parameters

    有效直径/mm材料厚度/mm曲率半径/mmConicA4A6A8A10
    面型127PMMA155−1.9141.047×10−4−3.943×10−71.167×10−9−1.609×10−12
    面型236PMMA1217.877−0.959−1.983×10−43.056×10−8−4.444×10−117.283×10−14
    下载: 导出CSV

    表  3  反射镜及面上特征点参数

    Table  3.   Parameters of characteristic points on the mirror and surface

    α(°)QFf/mmKθ(°)L/mmΔZ/mm材料
    数值45(18,−114.04)(−50,−22.04)160(70,−180.04)1627.24.57075-T6
    下载: 导出CSV
  • [1] SUGIOKA K, CHENG Y. A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methods[J]. Advanced Optical Technologies, 2012, 1(5): 353-364. doi: 10.1515/aot-2012-0033
    [2] 吴顺华, 刘国军, 王贞福, 等. 低温808 nm高效率半导体激光器[J]. 发光学报,2022,43(5):786-795. doi: 10.37188/CJL.20220025

    WU SH H, LIU G J, WANG ZH F, et al. Low temperature 808 nm high efficiency semiconductor laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 786-795. (in Chinese) doi: 10.37188/CJL.20220025
    [3] 顾勇刚, 牛健, 杨坚, 等. 激光在医疗领域中的应用[J]. 中国光学(中英文),2023,16(2):283-295. doi: 10.37188/CO.2023-0017

    GU Y G, NIU J, YANG J, et al. Application of laser in the medical field[J]. Chinese Optics, 2023, 16(2): 283-295. (in Chinese) doi: 10.37188/CO.2023-0017
    [4] 韩赛一, 田思聪, 徐汉阳, 等. 高速1 550 nm垂直腔面发射激光器研究进展[J]. 发光学报,2022,43(5):736-744. doi: 10.37188/CJL.20220048

    HAN S Y, TIAN S C, XU H Y, et al. Research progress of high-speed 1550 nm vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 736-744. (in Chinese) doi: 10.37188/CJL.20220048
    [5] 刘小亮, 孙少华, 孟祥厅, 等. 激光诱导击穿光谱法测定稀土矿区土壤中钐含量[J]. 中国光学(中英文),2022,15(4):712-721. doi: 10.37188/CO.2022-0042

    LIU X L, SUN SH H, MENG X T, et al. Measurement of Sm in rare earth mineral soil using laser-induced Breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. (in Chinese) doi: 10.37188/CO.2022-0042
    [6] 高瑀含. 高斯光束整形技术研究[D]. 长春: 长春理工大学, 2012.

    GAO Y H. Research on Gaussian beam shaping[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese)
    [7] 范祺, 蔡玉强, 贾思楠. 基于RobotStudio的机器人焊接工作站仿真[J]. 华北理工大学学报(自然科学版),2023,45(1):81-88.

    FAN Q, CAI Y Q, JIA S N. Robot welding workstation simulation based on Robot Studio[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2023, 45(1): 81-88. (in Chinese)
    [8] 陈银银. 基于激光视觉焊缝跟踪技术的机器人焊接智能产线设计[J]. 科技创新与应用,2023,13(1):120-123.

    CHEN Y Y. Design of robot welding intelligent production line based on laser vision seam tracking technology[J]. Technology Innovation and Application, 2023, 13(1): 120-123. (in Chinese)
    [9] SHAMOV E M, EVTIHEEV N N, SHIGANOV I N, et al. Technology and equipment for laser welding of annular pipes junction in fixed position of gas-main pipelines[J]. Journal of Physics:Conference Series, 2018, 1109(1): 012025.
    [10] 付强, 闫磊, 谭双龙, 等. 轻小型金属基增材制造光学系统[J]. 中国光学(中英文),2022,15(5):1019-1028. doi: 10.37188/CO.2022-0128

    FU Q, YAN L, TAN SH L, et al. Light-and-small optical systems by metal-based additive manufacturing[J]. Chinese Optics, 2022, 15(5): 1019-1028. (in Chinese) doi: 10.37188/CO.2022-0128
    [11] 傅戈雁, 石世宏, 韩学磊. 环形激光光内同轴送丝焊接试验研究[J]. 中国激光,2010,37(8):2080-2085. doi: 10.3788/CJL20103708.2080

    FU G Y, SHI SH H, HAN X L. Test research of laser welding based on coaxial wire feeding through an annular laser beam[J]. Chinese Journal of Lasers, 2010, 37(8): 2080-2085. (in Chinese) doi: 10.3788/CJL20103708.2080
    [12] KOTAR M, FUJISHIMA M, LEVY G N. Advances in the understanding of the annular laser beam wire cladding process[J]. Journal of Materials Processing Technology, 2021, 294: 117105. doi: 10.1016/j.jmatprotec.2021.117105
    [13] SHEN ZH X, YU J, SONG ZH ZH, et al. Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique[J]. Applied Optics, 2019, 58(9): 2269-2276. doi: 10.1364/AO.58.002269
    [14] 王德恩, 杨英, 张鑫, 等. 一种环形光束变换装置及变换方法: 中国, 108931855A[P]. 2018-12-04.

    WANG D E, YANG Y, ZHANG X, et al.. An annular beam conversion device and conversion method: CN, 108931855A[P]. 2018-12-04. (in Chinese)
    [15] 田玉元, 张佳琦, 姜潇桐, 等. 轴向位置可调的双中空环形光斑[J]. 中国光学(中英文),2023,16(2):329-338. doi: 10.37188/CO.2022-0036

    TIAN Y Y, ZHANG J Q, JIANG X T, et al. Double doughnut-shaped focal spots with controllable position in axial direction[J]. Chinese Optics, 2023, 16(2): 329-338. (in Chinese) doi: 10.37188/CO.2022-0036
    [16] 史光远. 基于非球面柱透镜的高斯光束整形[D]. 天津: 天津理工大学, 2014.

    SHI G Y. Gaussian beam shaping based on aspheric cylindrical lenses[D]. Tianjin: Tianjin University of Technology, 2014. (in Chinese)
    [17] 常颖, 王狮凌. 基于球面-非球面柱透镜的圆光斑高斯光束整形[J]. 激光与光电子学进展,2018,55(6):89-94.

    CHANG Y, WANG SH L. Gaussian beam shaping of round spot based on spheric-aspheric cylindrical lens[J]. Laser &Optoelectronics Progress, 2018, 55(6): 89-94. (in Chinese)
    [18] 胡萍, 刘晓萌, 田颖, 等. 直接泵浦中红外Dy: PbGa2S4激光器研究进展[J]. 发光学报,2022,43(12):1905-1914. doi: 10.37188/CJL.20220203

    HU P, LIU X M, TIAN Y, et al. Research progress of directly pumped mid-infrared Dy: PbGa2S4 lasers[J]. Chinese Journal of Luminescence, 2022, 43(12): 1905-1914. (in Chinese) doi: 10.37188/CJL.20220203
    [19] 彭亚蒙, 苏宙平. 用于发散激光光束整形的自由曲面透镜设计[J]. 光学学报,2016,36(5):217-227.

    PENG Y M, SU ZH P. Design of freeform surface lens for shaping divergent laser beam[J]. Acta Optica Sinica, 2016, 36(5): 217-227. (in Chinese)
    [20] CHEN B H, WU Q Y, TANG Y H, et al. Design of an optical system for generating annular-focused beams using a conical mirror and a parabolic cylindrical mirror[J]. Optik, 2023, 281: 170625. doi: 10.1016/j.ijleo.2023.170625
    [21] CHEN J N, YU Y J, WANG F F. Production of annular flat-topped vortex beams[J]. Chinese Optics Letters, 2011, 9(1): 011402. doi: 10.3788/COL201109.011402
    [22] 陈重琳. 利用液晶空间光调制器将激光整形为平顶光束的研究[D]. 武汉: 武汉理工大学, 2016.

    CHEN ZH L. Investigation on flat-top laser beam shaping using liquid crystal spatial light modulator[D]. Wuhan: Wuhan University of Technology, 2016. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  329
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-19
  • 网络出版日期:  2023-07-12

目录

    /

    返回文章
    返回