留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度相机的测量误差建模及校正

魏瑞丽 王明军 周熠铭 易芳

魏瑞丽, 王明军, 周熠铭, 易芳. 深度相机的测量误差建模及校正[J]. 中国光学(中英文), 2024, 17(2): 271-277. doi: 10.37188/CO.2023-0047
引用本文: 魏瑞丽, 王明军, 周熠铭, 易芳. 深度相机的测量误差建模及校正[J]. 中国光学(中英文), 2024, 17(2): 271-277. doi: 10.37188/CO.2023-0047
WEI Rui-li, WANG Ming-jun, ZHOU Yi-ming, YI Fang. Modeling and correction of measurement errors based on depth cameras[J]. Chinese Optics, 2024, 17(2): 271-277. doi: 10.37188/CO.2023-0047
Citation: WEI Rui-li, WANG Ming-jun, ZHOU Yi-ming, YI Fang. Modeling and correction of measurement errors based on depth cameras[J]. Chinese Optics, 2024, 17(2): 271-277. doi: 10.37188/CO.2023-0047

深度相机的测量误差建模及校正

基金项目: 国家自然科学基金重大研究计划培育项目(No. 92052106);国家自然科学基金(No. 61771385,No. 62101313);陕西省杰出青年科学基金(No. 2020JC-42)
详细信息
    作者简介:

    王明军(1979—),男,陕西安康人,博士,教授,博士生导师,2004年、2008年于西安电子科技大学无线电物理专业分别获得硕士、博士学位。2009 年至 2011 年在西北工业大学电子信息学院做博士后,2012年在美国佛罗里达州立大学做访问学者,2013 年至 2016 年在西安理工大学自动化与信息工程学院做博士后,主要从事无线光通信理论与技术方面的研究。E-mail:wangmingjun@xaut.edu.cn

    周熠铭(1999—),女,陕西宝鸡人,硕士,主要从事激光雷达点云数据处理方面的研究。E-mail:315022934@qq.com

    易 芳(1995—),女,陕西安康人,硕士,主要从事激光雷达点云数据处理方面的研究。E-mail:1625707287@qq.com

  • 中图分类号: TP391.41

Modeling and correction of measurement errors based on depth cameras

Funds: Supported by the National Natural Science Foundation of China (Grant No. 92052106, No. 61771385, No. 62101313) and Shaanxi Province Science Foundation for Distinguished Young Scholars (Grant No. 2020JC-42)
More Information
  • 摘要:

    ToF (Time of Flight)深度相机是获取三维点云数据的重要手段之一,但ToF深度相机受到自身硬件和外部环境的限制,其测量数据存在一定的误差。本文针对ToF深度相机的非系统误差进行研究,通过实验验证了被测目标的颜色、距离和相对运动等因素均会对深度相机获取的数据产生影响,且影响均不相同。本文提出了一种新的测量误差模型对颜色和距离产生的误差进行校正,对于相对运动产生的误差,建立了三维运动模糊函数进行恢复,通过对所建立的校正模型进行数值分析,距离和颜色的残余误差小于4 mm,相对运动所带来的误差小于0.7 mm。本文所做工作改善了ToF深度相机的测量数据的质量,为开展三维点云重建等工作提供了更精准的数据支持。

     

  • 图 1  ToF深度相机原理图

    Figure 1.  Principle diagram of the ToF depth camera

    图 2  颜色、距离及相对运动的实验图

    Figure 2.  Site maps of color, distance, and relative motion experiment

    图 3  不同背景颜色下,在距离相机1.5 m时的侧面图

    Figure 3.  Side view of background panels with different colors at a distance of 1.5 m from the camera

    图 4  转台旋转30°的点云图

    Figure 4.  Point cloud map when the turntable rotates 30°

    图 5  不同颜色对深度误差的影响

    Figure 5.  Effect of different colors on depth errors

    图 6  转台以不同转速旋转时不同角度相对于静止态的平均误差

    Figure 6.  Average error of turntable at different speeds and angles relative to the static state

    图 7  不同测量距离下的平均误差及文献[1]所提模型误差和本文所提模型误差

    Figure 7.  Average depth error of error models proposed by Ref. 1 and this paper at different average measurement distances

    图 8  深度误差校正结果

    Figure 8.  Depth error correction results

    图 9  不同颜色的误差校正结果及校正模型

    Figure 9.  Error correction results and correction models for different colors

    图 10  不同转速下不同角度的误差校正结果

    Figure 10.  Error correction results at different angles and speeds

    表  1  本文模型参数

    Table  1.   Parameters of proposed model

    参数名 参数值 参数名 参数值
    ${a_0}$ 0.001684 w 1.464
    ${a_1}$ −0.002211 ${b_1}$ 0.0007332
    ${a_2}$ −0.001091 ${b_2}$ 0.002141
    ${a_3}$ −0.002439 ${b_3}$ 0.002785
    ${a_4}$ 0.002291 ${b_4}$ −0.0004192
    下载: 导出CSV
  • [1] CHIABRANDO F, CHIABRANDO R, PIATTI D, et al. Sensors for 3D imaging: metric evaluation and calibration of a CCD/CMOS time-of-flight camera[J]. Sensors, 2009, 9(12): 10080-10096. doi: 10.3390/s91210080
    [2] CATTINI S, CASSANELLI D, DI LORO G, et al. Analysis, quantification, and discussion of the approximations introduced by pulsed 3-D LiDARs[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7007311.
    [3] JUNG S, LEE Y S, LEE Y, et al. 3D reconstruction using 3D registration-based ToF-stereo fusion[J]. Sensors, 2022, 22(21): 8369. doi: 10.3390/s22218369
    [4] LI Y F, GAO J, WANG X X, et al. Depth camera based remote three-dimensional reconstruction using incremental point cloud compression[J]. Computers and Electrical Engineering, 2022, 99: 107767. doi: 10.1016/j.compeleceng.2022.107767
    [5] WANG X Q, SONG P, ZHANG W Y, et al. A systematic non-uniformity correction method for correlation-based ToF imaging[J]. Optics Express, 2022, 30(2): 1907-1924. doi: 10.1364/OE.448029
    [6] 王明星, 郑福, 王艳秋, 等. 基于置信度的飞行时间点云去噪方法[J]. 红外技术,2022,44(5):513-520. doi: 10.11846/j.issn.1001-8891.2022.5.hwjs202205010

    WANG M X, ZHENG F, WANG Y Q, et al. Time-of-flight point cloud denoising method based on confidence level[J]. Infrared Technology, 2022, 44(5): 513-520. (in Chinese) doi: 10.11846/j.issn.1001-8891.2022.5.hwjs202205010
    [7] KEPSKI M, KWOLEK B. Fall detection using ceiling-mounted 3D depth camera[C]. International Conference on Computer Vision Theory and Applications, IEEE, 2014: 640-647.
    [8] LEE S, KIM J, LIM H, et al. Surface reflectance estimation and segmentation from single depth image of ToF camera[J]. Signal Processing:Image Communication, 2016, 47: 452-462. doi: 10.1016/j.image.2016.07.006
    [9] CHIABRANDO F, PIATTI D, RINAUDO F. SR-4000 ToF camera: further experimental tests and first applications to metric surveys[J]. Remote Sensing and Spatial Information Sciences, 2010, 38: 149-154.
    [10] JIMENEZ D, PIZARRO D, MAZO M. Single frame correction of motion artifacts in PMD-based time of flight cameras[J]. Image and Vision Computing, 2014, 32(12): 1127-1143. doi: 10.1016/j.imavis.2014.08.014
    [11] AHMED F, CONDE M H, MARTÍNEZ P L, et al. Pseudo-passive time-of-flight imaging: simultaneous illumination, communication, and 3D sensing[J]. IEEE Sensors Journal, 2022, 22(21): 21218-21231. doi: 10.1109/JSEN.2022.3208085
    [12] HASSAN M, EBERHARDT J, MALORODOV S, et al. Robust Multiview 3D pose estimation using time of flight cameras[J]. IEEE Sensors Journal, 2022, 22(3): 2672-2684. doi: 10.1109/JSEN.2021.3133108
    [13] WEYER C A, BAE K H, LIM K, et al. Extensive metric performance evaluation of a 3D range camera[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Sens, 2008, 37: 939-944.
    [14] MURE-DUBOIS J, HÜGLI H. Real-time scattering compensation for time-of-flight camera[C]. 5th International Conference on Computer Vision Systems (ICVS), ICVS, 2007: 1-12.
    [15] 李胜荣. 动态模糊图像复原研究[J]. 信息与电脑,2021,33(9):46-49. doi: 10.3969/j.issn.1003-9767.2021.09.015

    LI SH R. Study of dynamic MODULUS and image restoration[J]. China Computer & Communication, 2021, 33(9): 46-49. (in Chinese) doi: 10.3969/j.issn.1003-9767.2021.09.015
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  252
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-04-19
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回