留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等周期变倾角干涉条纹复用法扩展增强现实耦合元件体光栅角度带宽

彭灿福 李文昊 张伟 陈星硕 刘睿 张婧英 李文龙

彭灿福, 李文昊, 张伟, 陈星硕, 刘睿, 张婧英, 李文龙. 等周期变倾角干涉条纹复用法扩展增强现实耦合元件体光栅角度带宽[J]. 中国光学(中英文), 2023, 16(5): 1157-1167. doi: 10.37188/CO.2023-0050
引用本文: 彭灿福, 李文昊, 张伟, 陈星硕, 刘睿, 张婧英, 李文龙. 等周期变倾角干涉条纹复用法扩展增强现实耦合元件体光栅角度带宽[J]. 中国光学(中英文), 2023, 16(5): 1157-1167. doi: 10.37188/CO.2023-0050
PENG Can-fu, LI Wen-hao, ZHANG Wei, CHEN Xing-shuo, LIU Rui, ZHANG Jing-ying, LI Wen-long. Expanding the angular bandwidth of augmented reality coupling element volume holographic grating by multiplexing equal-period and variable-inclination-angle interference fringes[J]. Chinese Optics, 2023, 16(5): 1157-1167. doi: 10.37188/CO.2023-0050
Citation: PENG Can-fu, LI Wen-hao, ZHANG Wei, CHEN Xing-shuo, LIU Rui, ZHANG Jing-ying, LI Wen-long. Expanding the angular bandwidth of augmented reality coupling element volume holographic grating by multiplexing equal-period and variable-inclination-angle interference fringes[J]. Chinese Optics, 2023, 16(5): 1157-1167. doi: 10.37188/CO.2023-0050

等周期变倾角干涉条纹复用法扩展增强现实耦合元件体光栅角度带宽

doi: 10.37188/CO.2023-0050
基金项目: 国家重点研发计划资助项目(No. 2022YFF1202002);国家自然科学基金项目(No. 62005270);中国科学院战略性先导科技专项(C类)资助(No. XDC04030100);吉林省科技发展计划项目(No. 20210201140GX,No. 20210402056GH);吉林省与中国科学院科技合作高技术产业化专项资金项目(No. 2022SYHZ0024)
详细信息
    作者简介:

    彭灿福(1998—),男,福建泉州人,硕士研究生,2020年于闽南师范大学获得学士学位,主要从事光栅设计、AR光波导光学设计等方面的研究。E-mail:pengcanfu@163.com

    张 伟(1990—),男,山西大同人,博士,副研究员,2011年于电子科技大学获学士学位,2016年于中国科学院大学获博士学位,主要从事光栅理论设计及制作工艺、微纳光学等方面的研究。E-mail:zhangwei1990@ciomp.ac.cn

  • 中图分类号: O436

Expanding the angular bandwidth of augmented reality coupling element volume holographic grating by multiplexing equal-period and variable-inclination-angle interference fringes

Funds: Supported by National Key R & D Program of China (No. 2022YFF1202002); National Natural Science Foundation of China (NSFC) (No. 62005270); Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC04030100); Jinlin Province Science and Technology Development Plan (No. 20210201140GX, No. 20210402056GH); Special Fund Project of High-tech Industrialization of Science and Technology Cooperation between Jilin Province and Chinese Academy of Sciences (No. 2022SYHZ0024)
More Information
  • 摘要:

    为了提高光波导近眼显示成像系统的视场角,本文提出了一种等周期变倾角干涉条纹复用方法,用于扩展增强现实眼镜耦合元件体光栅的角度带宽。该方法通过复用等周期变倾角干涉条纹满足了不同入射角的布拉格条件,并且消除了体光栅周期变化对入射光衍射角度的影响,从而提升耦合元件体光栅的角度响应范围,降低光栅衍射引入的杂散光。利用严格耦合波理论对复用三幅等周期变倾角干涉条纹的体光栅进行模拟,在波长为530 nm的TE和TM偏振态下,复用后的体光栅角度带宽分别为3.6°和3.3°,与单幅干涉条纹体光栅相比,角度带宽扩展了1倍。该方法有望打破体光栅角度带宽受光栅材料的限制,用于扩展近眼显示成像系统的视场角,实现轻量化、高效率、大视场、低杂散光的增强现实眼镜。

     

  • 图 1  体全息光栅波导工作原理

    Figure 1.  Working principle of volume holographic grating waveguide

    图 2  体光栅角度响应特性分析

    Figure 2.  Analysis of angular response characteristics of volume holographic grating

    图 3  复用体光栅衍射特性分析

    Figure 3.  Multiplexing volume holographic grating diffraction characteristics

    图 4  体光栅与复用体光栅角度带宽随入射角度的变化曲线

    Figure 4.  Angular bandwidth of volume grating and multiplexed volume grating varying with incident angle

    图 5  不同入射条件下干涉条纹倾角间距对体全息光栅衍射特性影响

    Figure 5.  The influence of interference fringe inclination angle interval on the diffraction characteristics of volume holographic grating under different incident conditions

    图 6  折射率调制度对体光栅衍射特性的影响

    Figure 6.  Effect of refractive index modulation on diffraction characteristics of volume holographic grating

    图 7  体光栅光波导的视场角分析示意图

    Figure 7.  Schematic diagram of FOV analysis for the volume holographic grating waveguide

  • [1] XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light:Science &Applications, 2021, 10(1): 216.
    [2] SANDO Y, SATOH K, BARADA D, et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone[J]. Light:Advanced Manufacturing, 2022, 3(1): 26-34.
    [3] CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light:Advanced Manufacturing, 2021, 2(3): 350-369.
    [4] PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light:Advanced Manufacturing, 2022, 3(1): 137-150.
    [5] GUO X M, HUANG H, SONG Q, et al. Design of waveguide system using one dimension slant grating and two dimension grating[J]. SID Symposium Digest of Technical Papers, 2020, 51(S1): 23-27. doi: 10.1002/sdtp.13742
    [6] ROBERTS D C, SNARSKI S, SHERRILL T, et al. Soldier-worn augmented reality system for tactical icon visualization[J]. Proceedings of SPIE, 2012, 8383: 838305. doi: 10.1117/12.921290
    [7] KRESS B C, PACE M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light:Advanced Manufacturing, 2022, 3(4): 771-801.
    [8] ZHAN T, YIN K, XIONG J H, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397. doi: 10.1016/j.isci.2020.101397
    [9] 徐越, 范君柳, 孙文卿, 等. 基于全息波导的增强现实头盔显示器研究进展[J]. 激光杂志,2019,40(1):11-17. doi: 10.14016/j.cnki.jgzz.2019.01.011

    XU Y, FAN J L, SUN W Q, et al. Research progress of augmented reality head-mounted display based on holographic waveguide[J]. Laser Journal, 2019, 40(1): 11-17. (in Chinese) doi: 10.14016/j.cnki.jgzz.2019.01.011
    [10] 姜玉婷, 张毅, 胡跃强, 等. 增强现实近眼显示设备中光波导元件的研究进展[J]. 光学 精密工程,2021,29(1):28-44. doi: 10.37188/OPE.20212901.0028

    JIANG Y T, ZHANG Y, HU Y Q, et al. Development of optical waveguide elements in augmented reality near-eye displays[J]. Optics and Precision Engineering, 2021, 29(1): 28-44. (in Chinese) doi: 10.37188/OPE.20212901.0028
    [11] 黄颂超, 冯云鹏, 程灏波. 非对称轻小型头盔显示器光学系统设计[J]. 中国光学,2020,13(4):832-841. doi: 10.37188/CO.2019-0193

    HUANG S CH, FENG Y P, CHENG H B, et al. Non-symmetrical design of a compact, lightweight HMD optical system[J]. Chinese Optics, 2020, 13(4): 832-841. (in Chinese) doi: 10.37188/CO.2019-0193
    [12] 史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032

    SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese) doi: 10.37188/CO.2021-0032
    [13] FROMMER A. 11-3: Invited paper: lumus optical technology for AR[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 134-135. doi: 10.1002/sdtp.11589
    [14] ZHANG Y, FANG F ZH. Development of planar diffractive waveguides in optical see-through head-mounted displays[J]. Precision Engineering, 2019, 60: 482-496. doi: 10.1016/j.precisioneng.2019.09.009
    [15] WALDERN J D, GRANT A J, POPOVICH M M. 17-4: DigiLens AR HUD waveguide technology[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 204-207. doi: 10.1002/sdtp.12523
    [16] SHEN ZH W, ZHANG Y N, WENG Y SH, et al. Characterization and optimization of field of view in a holographic waveguide display[J]. IEEE Photonics Journal, 2017, 9(6): 7000911.
    [17] OKU T, AKUTSU K, KUWAHARA M, et al. 15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 192-195. doi: 10.1002/sdtp.10308
    [18] MUKAWA H, AKUTSU K, MATSUMURA I, et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 2009, 17(3): 185-193. doi: 10.1889/JSID17.3.185
    [19] 刘奡. 彩色全息波导显示系统中的关键技术研究[D]. 南京: 东南大学, 2019.

    LIU A. Study on the mechanism and key technology of the colorful holographic waveguide display[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [20] 谢豪, 霍富荣, 薛常喜. 用于头戴显示的新型耦合光栅结构优化设计与分析[J]. 光学学报,2022,42(14):1405001.

    XIE H, HUO F R, XUE CH X. Optimal design and analysis of new coupled grating structure for head-mounted display[J]. Acta Optica Sinica, 2022, 42(14): 1405001. (in Chinese)
    [21] HAN J, LIU J, YAO X CH, et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms[J]. Optics Express, 2015, 23(3): 3534-3549. doi: 10.1364/OE.23.003534
    [22] MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818. doi: 10.1364/JOSA.71.000811
  • 加载中
图(7)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  170
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-21
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-06-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!