Expanding the angular bandwidth of augmented reality coupling element volume holographic grating by multiplexing equal-period and variable-inclination-angle interference fringes
-
摘要:
为了提高光波导近眼显示成像系统的视场角,本文提出了一种等周期变倾角干涉条纹复用方法,用于扩展增强现实眼镜耦合元件体光栅的角度带宽。该方法通过复用等周期变倾角干涉条纹满足了不同入射角的布拉格条件,并且消除了体光栅周期变化对入射光衍射角度的影响,从而提升耦合元件体光栅的角度响应范围,降低光栅衍射引入的杂散光。利用严格耦合波理论对复用三幅等周期变倾角干涉条纹的体光栅进行模拟,在波长为530 nm的TE和TM偏振态下,复用后的体光栅角度带宽分别为3.6°和3.3°,与单幅干涉条纹体光栅相比,角度带宽扩展了1倍。该方法有望打破体光栅角度带宽受光栅材料的限制,用于扩展近眼显示成像系统的视场角,实现轻量化、高效率、大视场、低杂散光的增强现实眼镜。
Abstract:To improve the field of view of the near-to-eye display imaging system by using the optical waveguide scheme, we propose a method of multiplexing interference fringes with equal periods and variable inclination angles to expand the angular bandwidth of the volume holographic grating for augmented reality glasses coupling element. With this method, the range of incident angles after the expansion mathes the Bragg condition, and the influence of the periodic change on the diffraction angle of the incident light is eliminated, thereby improving the angular response range of the coupling element volume holographic grating and reducing the stray light introduced by grating diffraction. The rigorous coupled wave analysis theory is used to simulate the volume holographic grating multiplexing three interference fringes with equal period and variable inclination angles. Under the TE and TM polarization states at the wavelength of 530 nm, the angular bandwidth of the multiplexed volume holographic grating is 3.6° and 3.3°, respectively. The angular bandwidth of the multiplexed volume holographic grating is twice as large as that of the volume holographic grating recorded with a single interference fringe. This method is expected to break the limitation of the volume holographic grating material on the angular bandwidth of the grating, and can be used to expand the field of view of the near-to-eye display imaging system to achieve lightweight, high-efficiency, large-field-of-view, and low-stray-light augmented reality glasses.
-
-
[1] XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light:Science &Applications, 2021, 10(1): 216. [2] SANDO Y, SATOH K, BARADA D, et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone[J]. Light:Advanced Manufacturing, 2022, 3(1): 26-34. [3] CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light:Advanced Manufacturing, 2021, 2(3): 350-369. [4] PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light:Advanced Manufacturing, 2022, 3(1): 137-150. [5] GUO X M, HUANG H, SONG Q, et al. Design of waveguide system using one dimension slant grating and two dimension grating[J]. SID Symposium Digest of Technical Papers, 2020, 51(S1): 23-27. doi: 10.1002/sdtp.13742 [6] ROBERTS D C, SNARSKI S, SHERRILL T, et al. Soldier-worn augmented reality system for tactical icon visualization[J]. Proceedings of SPIE, 2012, 8383: 838305. doi: 10.1117/12.921290 [7] KRESS B C, PACE M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light:Advanced Manufacturing, 2022, 3(4): 771-801. [8] ZHAN T, YIN K, XIONG J H, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397. doi: 10.1016/j.isci.2020.101397 [9] 徐越, 范君柳, 孙文卿, 等. 基于全息波导的增强现实头盔显示器研究进展[J]. 激光杂志,2019,40(1):11-17. doi: 10.14016/j.cnki.jgzz.2019.01.011XU Y, FAN J L, SUN W Q, et al. Research progress of augmented reality head-mounted display based on holographic waveguide[J]. Laser Journal, 2019, 40(1): 11-17. (in Chinese) doi: 10.14016/j.cnki.jgzz.2019.01.011 [10] 姜玉婷, 张毅, 胡跃强, 等. 增强现实近眼显示设备中光波导元件的研究进展[J]. 光学 精密工程,2021,29(1):28-44. doi: 10.37188/OPE.20212901.0028JIANG Y T, ZHANG Y, HU Y Q, et al. Development of optical waveguide elements in augmented reality near-eye displays[J]. Optics and Precision Engineering, 2021, 29(1): 28-44. (in Chinese) doi: 10.37188/OPE.20212901.0028 [11] 黄颂超, 冯云鹏, 程灏波. 非对称轻小型头盔显示器光学系统设计[J]. 中国光学,2020,13(4):832-841. doi: 10.37188/CO.2019-0193HUANG S CH, FENG Y P, CHENG H B, et al. Non-symmetrical design of a compact, lightweight HMD optical system[J]. Chinese Optics, 2020, 13(4): 832-841. (in Chinese) doi: 10.37188/CO.2019-0193 [12] 史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese) doi: 10.37188/CO.2021-0032 [13] FROMMER A. 11-3: Invited paper: lumus optical technology for AR[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 134-135. doi: 10.1002/sdtp.11589 [14] ZHANG Y, FANG F ZH. Development of planar diffractive waveguides in optical see-through head-mounted displays[J]. Precision Engineering, 2019, 60: 482-496. doi: 10.1016/j.precisioneng.2019.09.009 [15] WALDERN J D, GRANT A J, POPOVICH M M. 17-4: DigiLens AR HUD waveguide technology[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 204-207. doi: 10.1002/sdtp.12523 [16] SHEN ZH W, ZHANG Y N, WENG Y SH, et al. Characterization and optimization of field of view in a holographic waveguide display[J]. IEEE Photonics Journal, 2017, 9(6): 7000911. [17] OKU T, AKUTSU K, KUWAHARA M, et al. 15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 192-195. doi: 10.1002/sdtp.10308 [18] MUKAWA H, AKUTSU K, MATSUMURA I, et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 2009, 17(3): 185-193. doi: 10.1889/JSID17.3.185 [19] 刘奡. 彩色全息波导显示系统中的关键技术研究[D]. 南京: 东南大学, 2019.LIU A. Study on the mechanism and key technology of the colorful holographic waveguide display[D]. Nanjing: Southeast University, 2019. (in Chinese) [20] 谢豪, 霍富荣, 薛常喜. 用于头戴显示的新型耦合光栅结构优化设计与分析[J]. 光学学报,2022,42(14):1405001.XIE H, HUO F R, XUE CH X. Optimal design and analysis of new coupled grating structure for head-mounted display[J]. Acta Optica Sinica, 2022, 42(14): 1405001. (in Chinese) [21] HAN J, LIU J, YAO X CH, et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms[J]. Optics Express, 2015, 23(3): 3534-3549. doi: 10.1364/OE.23.003534 [22] MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818. doi: 10.1364/JOSA.71.000811