留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合光学掩模调制的鼠眼像差精确测量

王亮 孔文 何益 黄江杰 史国华

王亮, 孔文, 何益, 黄江杰, 史国华. 结合光学掩模调制的鼠眼像差精确测量[J]. 中国光学(中英文), 2023, 16(5): 1100-1108. doi: 10.37188/CO.2023-0051
引用本文: 王亮, 孔文, 何益, 黄江杰, 史国华. 结合光学掩模调制的鼠眼像差精确测量[J]. 中国光学(中英文), 2023, 16(5): 1100-1108. doi: 10.37188/CO.2023-0051
WANG Liang, KONG Wen, HE Yi, HUANG Jiang-jie, SHI Guo-hua. Accurate measurement of mouse eye aberration combined with optical mask modulation[J]. Chinese Optics, 2023, 16(5): 1100-1108. doi: 10.37188/CO.2023-0051
Citation: WANG Liang, KONG Wen, HE Yi, HUANG Jiang-jie, SHI Guo-hua. Accurate measurement of mouse eye aberration combined with optical mask modulation[J]. Chinese Optics, 2023, 16(5): 1100-1108. doi: 10.37188/CO.2023-0051

结合光学掩模调制的鼠眼像差精确测量

基金项目: 国家重点研发计划项目(No. 2021YFF0700700);国家自然科学基金项目(No. 62075235);中国科学院青年创新促进会(No. 2019320);中国科学院战略性先导科技专项(No. XDA16021304)
详细信息
    作者简介:

    王 亮(1997—),男,江苏新沂人,硕士研究生,2020年于四川大学获得学士学位,主要从事眼科光学成像方面的研究。E-mail:wangl.stu@sibet.ac.cn

    何 益(1984—),男,四川营山人,博士,研究员,博士生导师,2008年于中国科学技术大学获得学士学位,2013年于中国科学院光电技术研究所获得博士学位并留所工作,2018年加入中国科学院苏州生物医学工程技术研究所,主要从事眼科光学、生物光子学、基于智能计算的精准医疗等方面的研究。E-mail:heyi@sibet.ac.cn

  • 中图分类号: O435.1;O435.2

Accurate measurement of mouse eye aberration combined with optical mask modulation

Funds: Supported by National Key Research and Development Program of China (No. 2021YFF0700700); National Natural Science Foundation of China (No. 62075235); Youth Innovation Promotion Association, CAS(No. 2019320); Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021304)
More Information
  • 摘要:

    进行波前探测时,标准动物模型小鼠的眼底视网膜双层反射光会导致像差探测失效。为解决这一问题,本文提出了一种结合光学掩模调制的鼠眼像差测量方法,以期提高鼠眼波前像差测量精度。首先,根据鼠眼视网膜的关键参数,建立鼠眼波前像差探测的光学系统模型并进行光学仿真。然后,分析比较不同孔径的光学掩模对视网膜非目标层反射光束的遮拦效果,确定光学掩模参数与实验方案。最后,搭建鼠眼波前像差探测系统并开展在体鼠眼波前像差的测量实验。实验结果表明:0.5 mm孔径的光学掩模可以将鼠眼波前像差的测量均方根误差降低74.9%,与理论仿真的80%区域实现非目标层反射光遮拦效果近似。本文研究实现了对鼠眼视网膜非目标层反射光的有效遮拦,提升了鼠眼波前像差探测精度,为进一步实现鼠眼高分辨率成像奠定了基础。

     

  • 图 1  鼠眼波前像差探测系统示意图

    Figure 1.  Schematic diagram of mouse eye wavefront detection system

    图 2  鼠眼视网膜双层反射原理示意图

    Figure 2.  The principle diagram of retinal double layer reflection in mouse eye

    图 3  无掩模时的波前点阵采集图

    Figure 3.  Wavefront spot array diagram without mask

    图 4  不同孔径掩模的波前点阵图及归一化的列截面图。(a)、(b) 0.2 mm孔径掩模;(c)、(d) 0.5 mm孔径掩模;(e)、(f) 0.8 mm孔径掩模

    Figure 4.  Wavefront spot array with different aperture masks and normalized column cross sections. (a), (b) Mask with 0.2 mm aperture; (c), (d) mask with 0.5 mm aperture; (e), (f) mask with 0.8 mm aperture

    图 5  模拟鼠眼波前采集图

    Figure 5.  Simulated mouse eye wavefront acquisition diagrams

    图 6  一只鼠眼的波前光斑阵列图、中心光斑归一化灰度图和波前像差图。(a) (b) (c)无掩模;(d) (e) (f)有掩模

    Figure 6.  Wavefront spot array, normalized grayscale image of center spot and wavefront aberration of one mouse eye. (a) (b) (c) without mask; (d) (e) (f) with mask

    图 7  无掩模时,6只鼠眼的Zernike多项式系数均值分布图,误差棒为±2 SE

    Figure 7.  Mean distribution of Zernike polynomial coefficients in 6 mouse eyes without mask, error bar: ±2 SE

    图 8  有掩模时,6只鼠眼的Zernike多项式系数均值分布图,误差棒为±2 SE

    Figure 8.  Mean distribution of Zernike polynomial coefficients in 6 mouse eyes with mask, error bar: ±2 SE

    表  1  Zemax鼠眼模型参数

    Table  1.   Zemax parameters of the mouse eye model

    结构曲率半径/mm厚度/mm折射率焦距/mm
    角膜前表面1.340.1051.404.575
    后表面1.300.5251.34
    晶状体前表面1.002.0501.551.659
    后表面−0.900.5501.34
    视网膜前表面−1.600.2201.3446.539
    后表面−1.50
    眼球部分1.974
    鼠眼整体1.961
    下载: 导出CSV
  • [1] NANEGRUNGSUNK O, PATIKULSILA D, SADDA S R. Ophthalmic imaging in diabetic retinopathy: A review[J]. Clinical &Experimental Ophthalmology, 2022, 50(9): 1082-1096.
    [2] ROSSI A, RAHIMI M, LE D, et al. Portable widefield fundus camera with high dynamic range imaging capability[J]. Biomedical Optics Express, 2023, 14(2): 906-917. doi: 10.1364/BOE.481096
    [3] 宋宗明, 郭晓红. 眼底多模式影像的进展及其现阶段存在的问题[J]. 中华眼底病杂志,2022,38(2):93-97.

    SONG Z M, GUO X H. The progress and problems of the fundus multimodal imaging[J]. Chinese Journal of Ocular Fundus Diseases, 2022, 38(2): 93-97. (in Chinese)
    [4] 唐宁, 樊金宇, 邢利娜, 等. 基于图论的视网膜自动分层方法[J]. 生物医学工程研究,2022,41(2):137-142.

    TANG N, FAN J Y, XING L N, et al. Automatic retinal layers segmentation based on graph theory[J]. Journal of Biomedical Engineering Research, 2022, 41(2): 137-142. (in Chinese)
    [5] MILELLA P, MAPELLI C, NASSISI M, et al. Adaptive optics of kyrieleis plaques in varicella zoster virus-associated posterior uveitis: a multimodal imaging analysis[J]. Journal of Clinical Medicine, 2023, 12(3): 884. doi: 10.3390/jcm12030884
    [6] GERARDY M, YESILIRMAK N, LEGRAS R, et al. CENTRAL SEROUS CHORIORETINOPATHY: high-resolution imaging of asymptomatic fellow eyes using adaptive optics scanning laser ophthalmoscopy[J]. Retina-the Journal of Retinal and Vitreous Diseases, 2022, 42(2): 375-380.
    [7] MORGAN J I W, CHUI T Y P, GRIEVE K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited][J]. Biomedical Optics Express, 2023, 14(1): 387-428. doi: 10.1364/BOE.472274
    [8] BISS D P, WEBB R H, ZHOU Y P, et al. An adaptive optics biomicroscope for mouse retinal imaging[J]. Proceedings of SPIE, 2007, 6467: 646703. doi: 10.1117/12.707531
    [9] 张雨东, 姜文汉, 史国华, 等. 自适应光学的眼科学应用[J]. 中国科学 G辑:物理学 力学 天文学,2007,37(1):68-74.

    ZHANG Y D, JIANG W H, SHI G H, et al. Application of adaptive optics in ophthalmology[J]. Science in China Physica,Mechanica &Astronomica, 2007, 37(1): 68-74. (in Chinese)
    [10] LIU L X, WU ZH Q, QI M J, et al. Application of adaptive optics in ophthalmology[J]. Photonics, 2022, 9(5): 288. doi: 10.3390/photonics9050288
    [11] LIU R X, ZHENG X L, LI D Y, et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera[J]. Chinese Physics B, 2014, 23(9): 094211. doi: 10.1088/1674-1056/23/9/094211
    [12] WANG X X, COPMANS D, DE WITTE P A M. Using zebrafish as a disease model to study fibrotic disease[J]. International Journal of Molecular Sciences, 2021, 22(12): 6404. doi: 10.3390/ijms22126404
    [13] WANG J, CAO H. Zebrafish and medaka: important animal models for human neurodegenerative diseases[J]. International Journal of Molecular Sciences, 2021, 22(19): 10766. doi: 10.3390/ijms221910766
    [14] YE H, XU X, WANG J X, et al. Polarization effects on the fluorescence emission of zebrafish neurons using light-sheet microscopy[J]. Biomedical Optics Express, 2022, 13(12): 6733-6744. doi: 10.1364/BOE.474588
    [15] 曾雯, 雷玲, 赵铖. 树鼩用于构建自身免疫性疾病动物模型展望[J]. 中国免疫学杂志,2022,38(15):1918-1921.

    ZENG W, LEI L, ZHAO CH. Prospects of tree shrews used to establish animal models of autoimmune diseases[J]. Chinese Journal of Immunology, 2022, 38(15): 1918-1921. (in Chinese)
    [16] JO D H, JANG H K, CHO C S, et al. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing[J]. Molecular Therapy-Nucleic Acids, 2023, 31: 16-27. doi: 10.1016/j.omtn.2022.11.021
    [17] ZHANG M, CHONG K K L, CHEN Z Y, et al. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes[J]. JCI Insight, 2023, 8(3): e160377. doi: 10.1172/jci.insight.160377
    [18] LI L L, JASMER K J, CAMDEN J M, et al. Early dry eye disease onset in a NOD. H-2h4 mouse model of Sjögren's syndrome[J]. Investigative Ophthalmology &Visual Science, 2022, 63(6): 18.
    [19] RAMOS R, CABRÉ E, VINYALS A, et al. Orthotopic murine xenograft model of uveal melanoma with spontaneous liver metastasis[J]. Melanoma Research, 2023, 33(1): 1-11. doi: 10.1097/CMR.0000000000000860
    [20] 张鹏飞, 张廷玮, 宋维业, 等. 从小鼠视网膜多种成像方式探讨眼科光学成像技术进展[J]. 中国激光,2020,47(2):0207003. doi: 10.3788/CJL202047.0207003

    ZHANG P F, ZHANG T W, SONG W Y, et al. Review of advances in ophthalmic optical imaging technologies from several mouse retinal imaging methods[J]. Chinese Journal of Lasers, 2020, 47(2): 0207003. (in Chinese) doi: 10.3788/CJL202047.0207003
    [21] GENG Y, DUBRA A, YIN L, et al. Adaptive optics retinal imaging in the living mouse eye[J]. Biomedical Optics Express, 2012, 3(4): 715-734. doi: 10.1364/BOE.3.000715
    [22] GENG Y, SCHERY L A, SHARMA R, et al. Optical properties of the mouse eye[J]. Biomedical Optics Express, 2011, 2(4): 717-38. doi: 10.1364/BOE.2.000717
    [23] AKONDI V, DUBRA A. Multi-layer Shack-Hartmann wavefront sensing in the point source regime[J]. Biomedical Optics Express, 2021, 12(1): 409-432. doi: 10.1364/BOE.411189
    [24] LI Q H, TIMMERS A M, HUNTER K, et al. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse[J]. Investigative Ophthalmology &Visual Science, 2001, 42(12): 2981-2989.
    [25] HORIO N, KACHI S, HORI K, et al. Progressive change of optical coherence tomography scans in retinal degeneration slow mice[J]. Archives of Ophthalmology, 2001, 119(9): 1329-1332. doi: 10.1001/archopht.119.9.1329
    [26] ABBOTT C J, MCBRIEN N A, GRÜNERT U, et al. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri)[J]. Investigative Ophthalmology &Visual Science, 2009, 50(1): 414-23.
    [27] ABBOTT C J, GRÜNERT U, PIANTA M J, et al. Retinal thinning in tree shrews with induced high myopia: Optical coherence tomography and histological assessment[J]. Vision Research, 2011, 51(3): 376-385. doi: 10.1016/j.visres.2010.12.005
    [28] ZHANG P F, MOCCI J, WAHL D J, et al. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations[J]. Experimental Eye Research, 2018, 172: 86-93. doi: 10.1016/j.exer.2018.03.027
    [29] BAWA G, TKATCHENKO T V, AVRUTSKY I, et al. Variational analysis of the mouse and rat eye optical parameters[J]. Biomedical Optics Express, 2013, 4(11): 2585-2595. doi: 10.1364/BOE.4.002585
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  135
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-19
  • 录用日期:  2023-05-31
  • 网络出版日期:  2023-06-07

目录

    /

    返回文章
    返回