留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯量子点荧光增强及pH响应特性研究

张北龙 李金华 陆冬筱 张可欣 王笑军 马力

张北龙, 李金华, 陆冬筱, 张可欣, 王笑军, 马力. 石墨烯量子点荧光增强及pH响应特性研究[J]. 中国光学(中英文), 2023, 16(3): 523-534. doi: 10.37188/CO.2023-0053
引用本文: 张北龙, 李金华, 陆冬筱, 张可欣, 王笑军, 马力. 石墨烯量子点荧光增强及pH响应特性研究[J]. 中国光学(中英文), 2023, 16(3): 523-534. doi: 10.37188/CO.2023-0053
ZHANG Bei-long, LI Jin-hua, LU Dong-xiao, ZHANG Ke-xin, WANG Xiao-jun, MA Li. Graphene quantum dots fluorescence enhancement and pH response characteristics[J]. Chinese Optics, 2023, 16(3): 523-534. doi: 10.37188/CO.2023-0053
Citation: ZHANG Bei-long, LI Jin-hua, LU Dong-xiao, ZHANG Ke-xin, WANG Xiao-jun, MA Li. Graphene quantum dots fluorescence enhancement and pH response characteristics[J]. Chinese Optics, 2023, 16(3): 523-534. doi: 10.37188/CO.2023-0053

石墨烯量子点荧光增强及pH响应特性研究

基金项目: 国家自然科学基金资助项目(No. 62174015);教育部“111”创新引智项目(No. D17017);吉林省科技厅项目(No. YDZJ202301ZYTS488,No. JJKH20220723KJ)
详细信息
    作者简介:

    张北龙(1993—),男,黑龙江鹤岗人,博士研究生,2015年于长春理工大学光电信息学院获得理学学士学位,主要从事纳米光子学和生物光子学方面的研究。E-mail:2018200016@mails.cust.edu.cn

    李金华(1977—),女,吉林长春人,博士,教授,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事纳米技术、光子学技术在生物研究及医学诊断与治疗应用方面的研究工作。E-mail:lijh@cust.edu.cn

    马 力(1957—),女,美籍华人,博士,教授,1993年于美国佐治亚大学获得化学博士学位,主要从事蛋白质大规模提纯工艺、电子自旋共振光谱学等方面的研究。Email:lma@georgiasouthern.edu

  • 中图分类号: O433.4

Graphene quantum dots fluorescence enhancement and pH response characteristics

Funds: Supported by National Natural Science Foundation of China (No. 62174015); the “111” Project of China (No. D17017); the Developing Project of Science and Technology of Jilin Province (No. YDZJ202301ZYTS488, No. JJKH20220723KJ)
More Information
  • 摘要:

    本文详细研究了交联剂1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)对石墨烯量子点(GQDs)光学性质的影响及原因。采用水热法制备了GQDs,并与EDC反应得到GQDs/EDC复合物,对GQDs和GQDs/EDC的光谱特性进行研究。使用PBS溶液以及人工胃液样品,研究pH对GQDs/EDC荧光影响规律及作用机理。实验结果表明:GQDs表面缺陷被EDC钝化,使得GQDs的荧光在小于1 min内迅速增强,并在5~20 min内保持稳定;相比单独GQDs,GQDs/EDC的荧光强度显著提升约264倍;pH响应实验表明,在pH值为1.75~4.01及4.01~9.28范围内,GQDs/EDC具有荧光和吸收强度线性响应规律。生物兼容性表明,在25~300 µg/mL样品浓度下,人乳腺癌细胞存活率均大于80%;同时,对人工胃液pH具有较高的检测准确性,其相对标准偏差RSD ≤ 1.10%。EDC介导的荧光增强,使GQDs在检测、传感、成像等领域更具优势。同时,GQDs/EDC灵敏的pH响应特性使其在pH值检测应用中具有良好前景。

     

  • 图 1  (a)GQDs的TEM图像;(b)尺寸分布柱状图及(c)与JCPDS 75-1621标准对比的GQDs XRD图谱;(d)GQDs/EDC复合材料TEM图像

    Figure 1.  (a) TEM image of GQDs; (b) histogram of size distribution; (c) XRD pattern of GQDs compared with JCPDS 75-1621 standard; (d) TEM image of GQDs/EDC composites

    图 2  CA和GQDs的FTIR光谱

    Figure 2.  FTIR spectra of CA and GQDs

    图 3  (a)EDC,PBS,GQDs和GQDs/EDC的PL光谱及(b)PL光谱的局部放大图

    Figure 3.  (a) PL spectra of EDC, PBS, GQDs and GQDs/EDC and (b) its local magnification

    图 4  不同激发波长下(a)GQDs和(c)GQDs/EDC的荧光光谱,以及不同探测波长下(b)GQDs及(d)GQDs/EDC的激发光谱

    Figure 4.  Fluorescence spectra of (a) GQDs and (c) GQDs/EDC at different excitation wavelengths, and excitation spectra of (b) GQDs and (d) GQDs/EDC at different detection wavelengths

    图 5  (a)EDC,GQDs,GQDs/EDC的吸收光谱,以及460 nm探测波长下GQDs/EDC的激发光谱。(b)GQDs的吸收光谱及其460 nm探测波长下的激发光谱。(c)GQDs和(d)GQDs/EDC在不同探测波长下的瞬态PL衰减曲线。各样品最终体积定容至2 mL,EDC含量为50 µL,15.28 mg/mL

    Figure 5.  (a) Absorption spectra of EDC, GQDs, GQDs/EDC, and excitation spectrum of GQDs/EDC at 460 nm detection wavelength. (b) Absorption spectrum of GQDs and excitation spectrum at 460 nm detection wavelength. Transient PL decay curves of (c) GQDs and (d) GQDs/EDC at different detection wavelengths. The final volume of each sample was 2 mL and EDC content is 50 µL, 15.28 mg/mL

    图 6  (a)GQDs分别与浓度为0~1700 µL的EDC混合反应后的荧光光谱以及(b) 荧光积分强度随EDC含量的变化趋势图。(c)pH值分别为7.2和2.3条件下,荧光积分强度随GQDs与EDC反应时间的变化关系

    Figure 6.  (a) Fluorescence spectra of GQDs/EDC with different EDC contents (0−1700 µL), and (b) the trend of fluorescence integrated intensity with EDC content. (c) The integrated PL intensity varies with the reaction time of GQDs/ EDC with the pH value of 7.2 and 2.3, respectively

    图 7  不同pH环境下的GQDs/EDC混合反应10 min后测得的(a)荧光光谱(λex=360 nm)和(c)吸收光谱。以及去基线后(b)荧光积分强度和(d)吸收积分强度随pH值的变化曲线。以及不同pH环境下GQDs/EDC的(e)明场和365 nm光源激发下的(f)暗场实物图

    Figure 7.  (a) Fluorescence spectra (λex=360 nm) and (c) absorption spectra of EDC and GQDs at different pH values after 10 min mixed reaction. (b) Integrated fluorescence and (d) absorption intensity as a function of pH value, after removing the baseline. (e) Bright-field and (f) dark-field images of GQDs/EDC under different pH environments with excitation by a 365 nm light source

    图 8  (a)不同EDC含量及(b)不同pH值条件时GQDs/EDC的瞬态荧光衰减曲线

    Figure 8.  (a) Transient fluorescence attenuation curves of GQDs/ EDCs under different EDC contents and (b) different pH conditions

    图 9  (a)选择性测试,GQDs/EDC对H+和其他常用离子 (5 mM)的荧光强度响应,其中Blank组为仅有PBS(pH 7.2)溶液(b)细胞与不同浓度GQDs/EDC共培养24 h后,MTT法测得的MCF-7细胞存活率

    Figure 9.  (a) Selective tests, the fluorescence intensity response of GQDs/EDC to H+ and other commonly used ions (5 mM), the Blank group was only PBS (pH 7.2) solution. (b) The survival rate of MCF-7 cells was determined by MTT method after 24 h co-culture with different concentrations of GQDs/ EDC

    表  1  不同方法的量子点荧光法测定pH值比较结果

    Table  1.   Comparison of pH values of quantum dots by different fluorometric determination methods

    SensorsMediumLinear rangeRef
    N,S co-doped carbon QDsIntracellular5.5~7.0[28]
    Carbon dotsIntracellular6.1~7.8[29]
    Carbon dotsIntracellulat6.03~8.91[30]
    N-doped GQDsAqueous solution1.25~13.56[31]
    CMC/GODsHydrogels filmNot given[32]
    GQDsIntracellularNot given[33]
    CuInS2/ZnS ODsAqueous solution5.7~8[34]
    GODsAqueous solution1.76~4.01
    4.01~9.28
    This work
    下载: 导出CSV

    表  2  胃液pH值的测定

    Table  2.   Determination of pH value of gastric juices

    Gastric juice samplepH valueRSD (%)b
    Glass electrodeaProposed methoda
    11.81±0.011.83±0.020.92
    22.13±0.022.18±0.010.60
    32.46±0.012.39±0.031.10
    a平均值±标准差(n=3);b相对标准偏差
    下载: 导出CSV
  • [1] ZHANG M K, LIU W D, GONG Y P, et al. Graphene/quantum dot heterostructure photodetectors: from material to performance[J]. Advanced Optical Materials, 2022, 10(24): 2201889. doi: 10.1002/adom.202201889
    [2] KAUR A, PANDEY K, KAUR R, et al. Nanocomposites of carbon quantum dots and graphene quantum dots: environmental applications as sensors[J]. Chemosensors, 2022, 10(9): 367. doi: 10.3390/chemosensors10090367
    [3] BARATI F, AVATEFI M, MOGHADAM N B, et al. A review of graphene quantum dots and their potential biomedical applications[J]. Journal of Biomaterials Applications, 2023, 37(7): 1137-1158. doi: 10.1177/08853282221125311
    [4] ROY D, FOUZDER C, MUKHUTY A, et al. Designed synthesis of dual emitting silicon quantum dot for cell imaging: direct labeling of alpha 2-HS-glycoprotein[J]. Bioconjugate Chemistry, 2019, 30(5): 1575-1583. doi: 10.1021/acs.bioconjchem.9b00279
    [5] GIDWANI B, SAHU V, SHUKLA S S, et al. Quantum dots: prospectives, toxicity, advances and applications[J]. Journal of Drug Delivery Science and Technology, 2021, 61: 102308. doi: 10.1016/j.jddst.2020.102308
    [6] WADHWA S, JOHN A T, NAGABOOSHANAM S, et al. Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application[J]. Applied Surface Science, 2020, 521: 146427. doi: 10.1016/j.apsusc.2020.146427
    [7] XUE G, YU S, QIANG ZH, et al. Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’ fluorescence sensors for biothiols[J]. Analytica Chimica Acta, 2020, 1108: 46-53. doi: 10.1016/j.aca.2020.01.062
    [8] ZHU SH J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research, 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3
    [9] PAN J H, ZHENG Z Y, YANG J Y, et al. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots[J]. Talanta, 2017, 166: 1-7. doi: 10.1016/j.talanta.2017.01.033
    [10] HE T, QI L, ZHANG J, et al. Enhanced graphene quantum dot fluorescence nanosensor for highly sensitive acetylcholinesterase assay and inhibitor screening[J]. Sensors and Actuators B:Chemical, 2015, 215: 24-29. doi: 10.1016/j.snb.2015.03.043
    [11] ACHADU O J, BRITTON J, NYOKONG T. Graphene quantum dots functionalized with 4-amino-2, 2, 6, 6-tetramethylpiperidine-N-oxide as fluorescence “turn-ON” nanosensors[J]. Journal of Fluorescence, 2016, 26(6): 2199-2212. doi: 10.1007/s10895-016-1916-y
    [12] JIN L, WANG Y, YAN F K, et al. The synthesis and application of nitrogen-doped graphene quantum dots on brilliant blue detection[J]. Journal of Nanomaterials, 2019, 2019: 1471728.
    [13] DONG Y Q, LIN J P, CHEN Y M, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13): 7410-7415. doi: 10.1039/C4NR01482K
    [14] 于宏伟, 王晓萱, 张雨萱, 等. 柠檬酸中红外光谱研究[J]. 江苏调味副食品,2021(1):29-32.

    YU H W, WANG X X, ZHANG Y X, et al. On the infrared spectroscopy of citric acid[J]. Jiangsu Condiment and Subsidiary Food, 2021(1): 29-32. (in Chinese)
    [15] DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12): 4738-4743. doi: 10.1016/j.carbon.2012.06.002
    [16] ZHUANG Q F, WANG Y, NI Y N. Solid-phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live-cell imaging[J]. Luminescence, 2016, 31(3): 746-753. doi: 10.1002/bio.3019
    [17] SAMRA K S, MANPREET, SINGH A. Facile synthesis of graphene quantum dots and their optical characterization[J]. Fullerenes,Nanotubes and Carbon Nanostructures, 2021, 29(8): 638-642. doi: 10.1080/1536383X.2021.1878152
    [18] FACURE M H M, SCHNEIDER R, MERCANTE L A, et al. Rational hydrothermal synthesis of graphene quantum dots with optimized luminescent properties for sensing applications[J]. Materials Today Chemistry, 2022, 23: 100755. doi: 10.1016/j.mtchem.2021.100755
    [19] PANYATHIP R, SUCHARITAKUL S, PHADUANGDHITIDHADA S, et al. Surface enhanced Raman scattering in graphene quantum dots grown via electrochemical process[J]. Molecules, 2021, 26(18): 5484. doi: 10.3390/molecules26185484
    [20] GAO L, WANG Y W, LU M, et al. Simple method for O-GlcNAc sensitive detection based on graphene quantum dots[J]. RSC Advances, 2017, 7(50): 31204-31211. doi: 10.1039/C7RA02643A
    [21] MURPHY K R. A note on determining the extent of the water Raman peak in fluorescence spectroscopy[J]. Applied Spectroscopy, 2011, 65(2): 233-236. doi: 10.1366/10-06136
    [22] KHARANGARH P R, UMAPATHY S, SINGH G. Investigation of sulfur related defects in graphene quantum dots for tuning photoluminescence and high quantum yield[J]. Applied Surface Science, 2018, 449: 363-370. doi: 10.1016/j.apsusc.2018.01.026
    [23] QU D, ZHANG M, LI J, et al. Tailoring color emission from N-doped graphene quantum dots for bioimaging applications[J]. Light:Science &Application, 2015, 4(12): e364. doi: 10.1038/lsa.2015.137
    [24] ZHU SH J, SHAO J R, SONG Y B, et al. Investigating the surface state of graphene quantum dots[J]. Nanoscale, 2015, 7(17): 7927-7933. doi: 10.1039/C5NR01178G
    [25] CHUNG S, REVIA R A, ZHANG M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2021, 33(22): 1904362. doi: 10.1002/adma.201904362
    [26] PU CH D, QIN H Y, GAO Y, et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. Journal of the American Chemical Society, 2017, 139(9): 3302-3311. doi: 10.1021/jacs.6b11431
    [27] WANG L, ZHU SH J, WANG H Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots[J]. ACS Nano, 2014, 8(3): 2541-2547. doi: 10.1021/nn500368m
    [28] SONG ZH Q, QUAN F Y, XU Y H, et al. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione[J]. Carbon, 2016, 104: 169-178. doi: 10.1016/j.carbon.2016.04.003
    [29] SAFAVI A, AHMADI R, MOHAMMADPOUR Z, et al. Fluorescent pH nanosensor based on carbon nanodots for monitoring minor intracellular pH changes[J]. RSC Advances, 2016, 6(106): 104657-104664. doi: 10.1039/C6RA21556D
    [30] LIU J H, LI J ZH, XU L Q, et al. Facile synthesis of N, B-doped carbon dots and their application for multisensor and cellular imaging[J]. Industrial &Engineering Chemistry Research, 2017, 56(14): 3905-3912.
    [31] KURNIAWAN D, CHIANG W H. Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors[J]. Carbon, 2020, 167: 675-684. doi: 10.1016/j.carbon.2020.05.085
    [32] RAKHSHAEI R, NAMAZI H, HAMISHEHKAR H, et al. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties[J]. International Journal of Biological Macromolecules, 2020, 150: 1121-1129. doi: 10.1016/j.ijbiomac.2019.10.118
    [33] FAN Z T, ZHOU SH X, GARCIA C, et al. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis[J]. Nanoscale, 2017, 9(15): 4928-4933. doi: 10.1039/C7NR00888K
    [34] KOKTYSH D S. Ratiometric pH sensor using luminescent CuInS2/ZnS quantum dots and fluorescein[J]. Materials Research Bulletin, 2020, 123: 110686. doi: 10.1016/j.materresbull.2019.110686
    [35] AI L, YANG Y S, WANG B Y, et al. . Insights into photoluminescence mechanisms of carbon dots: advances and perspectives[J]. Science Bulletin, 2021, 66(8): 839-856.
    [36] TACHI S, MORITA H, TAKAHASHI M, et al. Quantum yield enhancement in graphene quantum dots via esterification with benzyl alcohol[J]. Scientific Reports, 2019, 9(1): 14115. doi: 10.1038/s41598-019-50666-3
    [37] ZHANG L, ZHANG ZH Y, LIANG R P, et al. Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement[J]. Analytical Chemistry, 2014, 86(9): 4423-4430. doi: 10.1021/ac500289c
    [38] VÝBORNÝ K, VALLOVÁ J, KOČÍ Z, et al. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair[J]. Scientific Reports, 2019, 9(1): 10674. doi: 10.1038/s41598-019-47059-x
    [39] MARTINSEN T C, BERGH K, WALDUM H L. Gastric juice: a barrier against infectious diseases[J]. Basic &Clinical Pharmacology &Toxicology, 2005, 96(2): 94-102.
    [40] MAKOLA D, PEURA D A, CROWE S E. Helicobacter pylori infection and related gastrointestinal diseases[J]. Journal of Clinical Gastroenterology, 2007, 41(6): 548-558. doi: 10.1097/MCG.0b013e318030e3c3
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  141
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回