留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维阵列涡旋光束在海面大气中的传输特性

侯政诚 张明明 白胜闯 厉淑贞 刘俊 胡友友

侯政诚, 张明明, 白胜闯, 厉淑贞, 刘俊, 胡友友. 一维阵列涡旋光束在海面大气中的传输特性[J]. 中国光学(中英文), 2024, 17(2): 300-311. doi: 10.37188/CO.2023-0094
引用本文: 侯政诚, 张明明, 白胜闯, 厉淑贞, 刘俊, 胡友友. 一维阵列涡旋光束在海面大气中的传输特性[J]. 中国光学(中英文), 2024, 17(2): 300-311. doi: 10.37188/CO.2023-0094
HOU Zheng-cheng, ZHANG Ming-ming, BAI Sheng-chuang, LI Shu-zhen, LIU Jun, HU You-you. Propagation properties of one-dimensional array vortex beams in a marine atmosphere[J]. Chinese Optics, 2024, 17(2): 300-311. doi: 10.37188/CO.2023-0094
Citation: HOU Zheng-cheng, ZHANG Ming-ming, BAI Sheng-chuang, LI Shu-zhen, LIU Jun, HU You-you. Propagation properties of one-dimensional array vortex beams in a marine atmosphere[J]. Chinese Optics, 2024, 17(2): 300-311. doi: 10.37188/CO.2023-0094

一维阵列涡旋光束在海面大气中的传输特性

基金项目: 国家自然科学基金青年基金(No. 12104189,No. 12104190);江苏省自然科学基金青年基金(No. BK20190953,No. BK20210874);江苏省产学研合作项目(No. BY2020680);江苏省高等学校自然科学研究面上项目(No. 20KJB140008);浙江省光电探测材料及器件重点实验室开放基金(No. KLPMD2105)
详细信息
    作者简介:

    张明明(1988—),男,安徽亳州人,博士,讲师,主要从事光场调控与传输、固体激光器方面的研究。E-mail:zhangmingming@just.edu.cn

  • 中图分类号: O436

Propagation properties of one-dimensional array vortex beams in a marine atmosphere

Funds: Supported by Youth Fund of National Natural Science Foundation of China (No. 12104189, No. 12104190); Youth Fund of Natural Science Foundation of Jiangsu Province (No. BK20190953, No. BK20210874); Jiangsu Province Industry University Research Cooperation Project (No. BY2020680); General Project of Natural Science Research in Colleges and Universities of Jiangsu Province (No. 20KJB14008); Opening Project of Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province (No. KLPMD2105)
More Information
    Corresponding author: zhangmingming@just.edu.cn
  • 摘要:

    相较于单涡旋光束,涡旋阵列光束能够扩充信息的传输容量,研究其传输特性对其光通信应用具有重要意义。本文选取阶数为n的螺旋因斯-高斯(HIGn,n)模式,采用海上大气折射率变换的功率谱,模拟海面大气湍流。基于相位屏法研究了一维阵列涡旋光束在海面大气湍流中光强、相位、闪烁因子和质心漂移的变化情况。结果表明:(1)HIGn,n模式的闪烁因子和质心漂移标准差随湍流强度以及大气湍流内尺度的增加而增加;(2)n为奇数的HIGn,n模式的闪烁因子随着阶数的增大而减小,且高于n为偶数的HIGn,n模式;(3)阶数n>1的HIGn,n模式比LG0,1模式具有更好的稳定性;(4)阶数越高,HIGn,n模式的质心漂移标准差越小。其次,选取线性阵列涡旋光束(LAVBs)进行对比,研究得出虽然LAVBs比HIG光束具有更好的传输性能,但由于HIG光束具有独特的结构,故可适用于不同的应用场景。最后,分析了椭圆参量和椭圆环数对HIG模式传输的影响,结果表明适当地增大椭圆参量或椭圆环数有助于提高HIG模式的抗湍流能力。本文研究结果对涡旋光束的海上应用具有指导意义。

     

  • 图 1  不同阶数的HIG模式的(a)初始光强与(b)相位分布

    Figure 1.  (a) Initial light intensity distribution and (b) phase distribution of HIG modes with different orders

    图 2  不同阶数的HIG模式在不同距离下的(a)光强与(b)相位分布

    Figure 2.  (a) Intensity and (b) phase distribution of HIG modes with different orders at different distances

    图 3  HIG模式在不同强度湍流下闪烁因子。(a)2×10−16 m−2/3;(b)2×10−15 m−2/3;(c)2×10−14 m−2/3

    Figure 3.  Scintillation index of HIG modes under different turbulence intensities. (a) 2×10−16 m−2/3; (b) 2×10−15 m−2/3; (c) 2×10−14 m−2/3

    图 4  HIG模式在不同湍流内尺度下的闪烁因子。(a)l0=0.1 m;(b)l0=0.01 m;(c)l0=0.005 m

    Figure 4.  Scintillation index of HIG modes at different turbulence inner scales. (a) l0=0.1 m; (b) l0=0.01 m; (c) l0=0.005 m

    图 5  HIG模式在不同强度湍流下质心漂移标准差。(a)2×10−16 m−2/3;(b)2×10−15 m−2/3;(c)2×10−14 m−2/3

    Figure 5.  Standard deviation of spot centroid wander of HIG modes under different turbulence intensities. (a) 2×10−16 m−2/3; (b) 2×10−15 m−2/3; (c) 2×10−14 m−2/3

    图 6  不同子光束数的LAVBs在不同距离下的光强与相位分布

    Figure 6.  Intensity and phase distribution of LAVBs with different subbeam numbers at different distances

    图 7  LAVBs在不同距离下的(a)质心漂移标准差与(b)闪烁因子

    Figure 7.  (a) Standard deviation of spot centroid wander and (b) scintillation index of LAVBs at different distances

    图 8  不同种类的HIGp,m光束的光强分布

    Figure 8.  The intensity distributions of different kinds of HIGp,m beams

    图 9  椭圆参数对HIG光束传输的影响。(a)HIG4,4光束的闪烁因子随椭圆参量的变化;(b)HIG4,4光束的质心漂移标准差随椭圆参量的变化;(c)不同椭圆环数的HIG光束的闪烁因子;(d)不同椭圆环数的HIG光束的质心漂移标准差

    Figure 9.  Influence of ellipticity parameters on HIG beam transmission. (a) Scintillation index and (b) standard deviation of spot centroid wander of HIG4,4 beams as a function of ellipticity parameter; (c) scintillation index and (d) standard deviation of spot centroid wander of HIG beams with different elliptic ring numbers

  • [1] BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601
    [2] WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138
    [3] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81
    [4] WESTPHAL V, RIZZOLI S O, LAUTERBACH M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249. doi: 10.1126/science.1154228
    [5] NICOLAS A, VEISSIER L, GINER L, et al. A quantum memory for orbital angular momentum photonic qubits[J]. Nature Photonics, 2014, 8(3): 234-238. doi: 10.1038/nphoton.2013.355
    [6] KOLMOGOROV A N. Equations of turbulent motion in an incompressible fluid[J]. Dokl. Akad. Nauk SSSR, 1941, 30(4): 299-303.
    [7] 王飞, 余佳益, 刘显龙, 等. 部分相干光束经过湍流大气传输研究进展[J]. 物理学报,2018,67(18):184203. doi: 10.7498/aps.67.20180877

    WANG F, YU J Y, LIU X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203. (in Chinese). doi: 10.7498/aps.67.20180877
    [8] WANG SH L, CHENG M J, YANG X H, et al. Self-focusing effect analysis of a perfect optical vortex beam in atmospheric turbulence[J]. Optics Express, 2023, 31(13): 20861-20871. doi: 10.1364/OE.492275
    [9] 王红星, 吴晓军, 宋博. 海上大气湍流中光束漂移模型分析[J]. 中国激光,2016,43(2):0213001. doi: 10.3788/CJL201643.0213001

    WANG H X, WU X J, SONG B. Modeling and analysis of beam wander in maritime atmospheric turbulence[J]. Chinese Journal of Lasers, 2016, 43(2): 0213001. (in Chinese). doi: 10.3788/CJL201643.0213001
    [10] ZHUANG Y, YANG Q X, WU P F, et al. Vortex beam array generated by a volume compound fork grating in lithium niobite[J]. Results in Physics, 2021, 24: 104083. doi: 10.1016/j.rinp.2021.104083
    [11] FAN H H, ZHANG H, CAI C Y, et al. Flower-shaped optical vortex array[J]. Annalen der Physik, 2021, 533(4): 2000575. doi: 10.1002/andp.202000575
    [12] YUAN J P, ZHANG H F, WU CH H, et al. Creation and control of vortex-beam arrays in atomic vapor[J]. Laser & Photonics Reviews, 2023, 17(5): 2200667.
    [13] 吴武明, 宁禹, 任亚杰, 等. 阵列光束在湍流大气中传输的光强闪烁研究进展[J]. 激光与光电子学进展,2012,49(7):070008.

    WU W M, NING Y, REN Y J, et al. Research progress of scintillations for laser array beams in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070008. (in Chinese).
    [14] 骆传凯, 卢芳, 苗志芳, 等. 径向阵列涡旋光束在大气中的传输与扩展[J]. 光学学报,2019,39(6):0601004. doi: 10.3788/AOS201939.0601004

    LUO CH K, LU F, MIAO ZH F, et al. Propagation and spreading of radial vortex beam array in atmosphere[J]. Acta Optica Sinica, 2019, 39(6): 0601004. (in Chinese). doi: 10.3788/AOS201939.0601004
    [15] 牛超君, 卢芳, 韩香娥. 相位屏法模拟高斯阵列光束海洋湍流传输特性[J]. 光学学报,2018,38(6):0601004. doi: 10.3788/AOS201838.0601004

    NIU CH J, LU F, HAN X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 38(6): 0601004. (in Chinese). doi: 10.3788/AOS201838.0601004
    [16] LUO CH K, LU F, HAN X E. Propagation and evolution of rectangular vortex beam array through atmospheric turbulence[J]. Optik, 2020, 218: 164913. doi: 10.1016/j.ijleo.2020.164913
    [17] 陈盼盼, 屈军, 周正仙, 等. 阵列光束在各向异性湍流大气传输时的光束漂移[J]. 量子电子学报,2019,36(3):270-277.

    CHEN P P, QU J, ZHOU ZH X, et al. Beam wander of array beams propagating through anisotropic turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 270-277. (in Chinese).
    [18] MA X L, LIU D J, WANG Y CH, et al. Propagation of rectangular multi-Gaussian Schell-model array beams through free space and non-Kolmogorov turbulence[J]. Applied Sciences, 2020, 10(2): 450. doi: 10.3390/app10020450
    [19] 凡顺利. 大气中阵列合成光束稳态热晕的数值模拟[D]. 西安: 西安电子科技大学, 2018.

    FAN SH L. Numerical simulation of steady-state thermal blooming of array composite beams in atmosphere[D]. Xi’an: Xidian University, 2018. (in Chinese).
    [20] 张明明, 白胜闯, 董俊. Ince-Gaussian模式激光的研究进展[J]. 激光与光电子学进展,2016,53(2):020002.

    ZHANG M M, BAI SH CH, DONG J. Advances in Ince-Gaussian modes laser[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020002. (in Chinese).
    [21] WOERDEMANN M, ALPMANN C, DENZ C. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101. doi: 10.1063/1.3561770
    [22] ROBERTSON E, PIRES D G, DAI K J, et al. Constant-envelope modulation of Ince-Gaussian beams for high bandwidth underwater wireless optical communications[J]. Journal of Lightwave Technology, 2023, 41(16): 5209-5216. doi: 10.1109/JLT.2023.3252466
    [23] YU Y, CHEN Y, WANG CH Y, et al. Optical storage of Ince-Gaussian modes in warm atomic vapor[J]. Optics Letters, 2021, 46(5): 1021-1024. doi: 10.1364/OL.414762
    [24] GONZÁLEZ-DOMÍNGUEZ M A, PICENO-MARTÍNEZ A E, ROSALES-ZÁRATE L E C. Nonlocality and quantum correlations in Ince-Gauss structured light modes[J]. Journal of the Optical Society of America B, 2023, 40(4): 881-890. doi: 10.1364/JOSAB.482580
    [25] EYYUBOĞLU H T. Propagation analysis of Ince-Gaussian beams in turbulent atmosphere[J]. Applied Optics, 2014, 53(11): 2290-2296. doi: 10.1364/AO.53.002290
    [26] NARVÁEZ CASTAÑEDA E, GUERRA VÁZQUEZ J C, RAMÍREZ ALARCÓN R, et al. Ince-Gauss beams in a turbulent atmosphere: the effect of structural parameters on beam resilience[J]. Optics Continuum, 2022, 1(8): 1777-1794. doi: 10.1364/OPTCON.461875
    [27] 卢芳. 阵列光束在湍流大气中的传输及目标散射回波特性[D]. 西安: 西安电子科技大学, 2016.

    LU F. Propagation and target scattered characteristics of array beams in turbulent atmosphere[D]. Xi’an: Xidian University, 2016. (in Chinese).
    [28] GRAYSHAN K J, VETELINO F S, YOUNG C Y. A marine atmospheric spectrum for laser propagation[J]. Waves in Random and Complex Media, 2008, 18(1): 173-184. doi: 10.1080/17455030701541154
    [29] SUN B Y, LÜ H, WU D, et al. Propagation of a modified complex Lorentz–Gaussian-correlated beam in a marine atmosphere[J]. Photonics, 2021, 8(3): 82. doi: 10.3390/photonics8030082
    [30] 杨天星. 海洋湍流相位屏模型及该模型下OAM光束传输特性研究[D]. 南京: 南京邮电大学, 2018.

    YANG T X. Study on the ocean turbulence phase screen model and the transmission characteristics of OAM beam under this model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  155
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-20
  • 录用日期:  2023-08-30
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回