留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星间通信系统高精度分光镜的研制

王振宇 付秀华 林兆文 黄健山 魏雨君 吴桂青 潘永刚 董所涛 王奔

王振宇, 付秀华, 林兆文, 黄健山, 魏雨君, 吴桂青, 潘永刚, 董所涛, 王奔. 星间通信系统高精度分光镜的研制[J]. 中国光学(中英文), 2024, 17(2): 334-341. doi: 10.37188/CO.2023-0100
引用本文: 王振宇, 付秀华, 林兆文, 黄健山, 魏雨君, 吴桂青, 潘永刚, 董所涛, 王奔. 星间通信系统高精度分光镜的研制[J]. 中国光学(中英文), 2024, 17(2): 334-341. doi: 10.37188/CO.2023-0100
WANG Zhen-yu, FU Xiu-hua, LIN Zhao-wen, HUANG Jian-shan, WEI Yu-jun, WU Gui-qing, PAN Yong-gang, DONG Suo-tao, WANG Ben. Development of high-precision beam splitter for inter-satellite communication system[J]. Chinese Optics, 2024, 17(2): 334-341. doi: 10.37188/CO.2023-0100
Citation: WANG Zhen-yu, FU Xiu-hua, LIN Zhao-wen, HUANG Jian-shan, WEI Yu-jun, WU Gui-qing, PAN Yong-gang, DONG Suo-tao, WANG Ben. Development of high-precision beam splitter for inter-satellite communication system[J]. Chinese Optics, 2024, 17(2): 334-341. doi: 10.37188/CO.2023-0100

星间通信系统高精度分光镜的研制

基金项目: 2022年度中山市第二批社会公益与基础研究项目(No. 2022B2005);长春市激光制造与检测装备科技创新中心资助项目(No.2014219)
详细信息
    作者简介:

    付秀华(1963—),吉林长春人,博士,教授,博士生导师,主要从事光学薄膜、光学工艺等方面的研究。E-mail:goptics@163.com

  • 中图分类号: O484

Development of high-precision beam splitter for inter-satellite communication system

Funds: Supported by the Second Batch of Social Welfare and Basic Research Projects in Zhongshan City in 2022 (No. 2022B2005); Changchun Laser Manufacturing and Testing Equipment Science and Technology Innovation Center Project (No. 2014219)
More Information
    Corresponding author: goptics@126.com
  • 摘要:

    随着星间通信系统的迅速发展,数据传输的精度要求不断提高。分光镜作为系统的核心元件,其光谱特性和面形精度直接影响整个系统的传输精度。本文基于薄膜干涉理论,选取Ta2O5与SiO2作为高低折射率膜层材料进行膜系设计,采用电子束蒸发的方式在石英基板上制备高精度分光镜。同时根据膜层应力补偿原理建立面形修正模型,修正分光镜面形。光谱分析仪检测结果显示,分光镜在入射角度为21.5°~23.5°内,1563 nm透过率大于98%,1540 nm反射率大于99%。激光干涉仪检测结果显示,分光镜反射面形精度RMS由λ/10修正至λ/90(λ=632.8 nm),透过面形精度RMS为λ/90。

     

  • 图 1  分光膜理论光谱透过率曲线

    Figure 1.  Theoretical spectra transmittance curve of the splitter film

    图 2  分光镜双面理论光谱透过率曲线

    Figure 2.  Double sided theoretical spectra transmittance curve of the beam splitter mirror

    图 3  薄膜应力图。(a)张应力;(b)压应力

    Figure 3.  Thin film stress maps. (a) Tensile stress; (b) compressive stress

    图 4  基底的反射波前示意图

    Figure 4.  Schematic diagram of reflection wavefront of the substrate

    图 5  基底的矢高值与曲率半径示意图

    Figure 5.  Schematic diagram of the Power and curvature radius of the substrate

    图 6  分光膜的透过率测试曲线与拟合曲线

    Figure 6.  Transmittance test curve and fitting curve of the splitter film

    图 7  4片样品能量谱密度图

    Figure 7.  Power spectral densities of 4 samples

    图 8  4片样品的透过率曲线

    Figure 8.  Transmittance curves of 4 samples

    图 9  样品Power改变量随沉积SiO2厚度变化的拟合曲线

    Figure 9.  Fitting curve for the change in sample power with the thickness of deposited SiO2

    图 10  分光镜能量谱密度图

    Figure 10.  Power spectrum density of beam splitter mirror

    图 11  分光镜的透过率曲线

    Figure 11.  Transmittance curves of beam splitter mirror

    表  1  材料沉积工艺参数

    Table  1.   Material deposition process parameters

    材料 沉积速率/(nm·s−1) 起始真空度/(×10−4 Pa) 沉积温度/(°C)
    Ta2O5 0.4 7 220
    SiO2 0.6 7 220
    下载: 导出CSV

    表  2  不同离子源工艺参数对应的样片$\Delta $Power

    Table  2.   $\Delta $power of the sample corresponding to different process parameters of ion source

    编号 电压/V 束流/mA 面形图 ∆power(λ)
    基底 沉积后
    1 1 100 950 0.148 5
    2 1 000 920 0.160 2
    3 950 900 0.182 1
    下载: 导出CSV

    表  3  离子源工艺参数

    Table  3.   Process parameters of ion source

    材料电压/
    V
    束流/
    mA
    气体 O2/
    Sccm
    气体 Ar/
    Sccm
    Ta2O51 100950508
    SiO2(直控)1 100950508
    SiO2(背反)950900508
    SiO2(晶控)950900508
    下载: 导出CSV

    表  4  样品沉积分光膜的面形结果

    Table  4.   Surface shape results of sample deposited beam splitter

    类别 编号 1# 2# 3# 4#
    基底 面形图
    PV(λ) 0.074 6 0.076 1 0.077 4 0.072 3
    RMS(λ) 0.008 7 0.009 2 0.009 7 0.008 3
    Power(λ) 0.007 3 0.008 1 0.008 4 0.007 8
    沉积后 面形
    PV(λ) 0.516 7 0.528 9 0.531 6 0.515 3
    RMS(λ) 0.111 8 0.111 6 0.111 4 0.111 9
    Power(λ) −0.385 9 −0.383 9 −0.382 7 −0.3854
    下载: 导出CSV

    表  5  样品Power改变量与A值随沉积SiO2膜层厚度变化的数据

    Table  5.   Data on the variation of sample Power and A-values with different thicknesses of deposited SiO2 film

    SiO2厚度(nm) ∆Power(λ) A(∆λ/100 nm SiO2)
    3 500 0.155 1 0.004 43
    5 000 0.228 0 0.004 56
    6 500 0.308 8 0.004 75
    8 000 0.394 4 0.004 93
    9 500 0.488 3 0.005 14
    下载: 导出CSV

    表  6  修正前后样品的面形参数

    Table  6.   Surface parameters of samples before and after correction

    类别 面形图 PV(λ) RMS(λ) Power(λ)
    修正前 0.531 6 0.111 4 −0.382 7
    修正后 0.121 9 0.016 2 −0.042 9
    下载: 导出CSV

    表  7  修正前后的面形参数与面形图

    Table  7.   Surface parameters and surface profile before and after correction

    类别 面形图 PV(λ) RMS(λ) Power(λ)
    基底 0.0723 0.0083 0.0078
    修正前( 反射面形) 0.5153 0.1119 −0.3854
    修正后(反射面形) 0.0888 0.0107 −0.0153
    修正前(透过面形) 0.0694 0.0097 0.0136
    修正后(透过面形) 0.0783 0.0103 0.0141
    下载: 导出CSV
  • [1] 刘旭光, 钱志升, 周继航, 等. “星链”卫星系统及国内卫星互联网星座发展思考[J]. 通信技术,2022,55(2):197-204. doi: 10.3969/j.issn.1002-0802.2022.02.010

    LIU X G, QIAN ZH SH, ZHOU J H, et al. Thinking on the development of “starlink” satellite system and domestic satellite internet constellation[J]. Communications Technology, 2022, 55(2): 197-204. (in Chinese). doi: 10.3969/j.issn.1002-0802.2022.02.010
    [2] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程,2023,52(3):20220393. doi: 10.3788/IRLA20220393

    LI R, LIN B J, LIU Y CH, et al. Review on laser intersatellite link: current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. (in Chinese). doi: 10.3788/IRLA20220393
    [3] 王燕, 陈培永, 宋义伟, 等. 国外空间激光通信技术的发展现状与趋势[J]. 飞控与探测,2019,2(1):8-16.

    WANG Y, CHEN P Y, SONG Y W, et al. Progress on the development and trend of overseas space laser communication technology[J]. Flight Control & Detection, 2019, 2(1): 8-16. (in Chinese).
    [4] 高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/co.20181106.0901

    GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese). doi: 10.3788/co.20181106.0901
    [5] 夏方园, 汪勃, 张国亭, 等. 激光星间链路终端技术发展与展望[J]. 光学技术,2023,49(2):175-183.

    XIA F Y, WANG B, ZHANG G T, et al. Recent development and prospective of inter-satellite laser links terminal technology[J]. Optical Technique, 2023, 49(2): 175-183. (in Chinese).
    [6] 樊彦峥. 大口径镜面高反射膜制备及面形控制技术[D]. 西安: 西安工业大学, 2021.

    FAN Y ZH. Deposition and surface shape control technology of large-aperture mirror high-reflection film[D]. Xi’an: Xi’an Technological University, 2021. (in Chinese).
    [7] 高伟饶, 董科研, 江伦. 单波长激光通信终端的隔离度[J]. 中国光学(中英文), 2023, 16(5): 1137-1148.

    GAO W R, DONG K Y, JIANG L. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148.
    [8] 李波, 王超, 闫涛, 等. 多层高反膜的应力研究[J]. 真空与低温,2023,29(2):146-152. doi: 10.3969/j.issn.1006-7086.2023.02.007

    LI B, WANG CH, YAN T, et al. Stress study of multi-layer high reflection films[J]. Vacuum and Cryogenics, 2023, 29(2): 146-152. (in Chinese). doi: 10.3969/j.issn.1006-7086.2023.02.007
    [9] 李阳, 徐均琪, 刘政, 等. 残余应力对介质高反膜面型影响的研究[J]. 真空科学与技术学报,2021,41(5):484-490. doi: 10.13922/j.cnki.cjvst.202009001

    LI Y, XU J Q, LIU ZH, et al. Study on the influence of residual stress on dielectric high reflection films[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 484-490. (in Chinese). doi: 10.13922/j.cnki.cjvst.202009001
    [10] 白金林, 姜玉刚, 王利栓, 等. 超低面形宽带高反射薄膜设计及制备技术研究[J]. 红外与激光工程,2021,50(2):20200413. doi: 10.3788/IRLA20200413

    BAI J L, JIANG Y G, WANG L SH, et al. Research on the design and preparation of ultra-low plane wide-band high reflection film[J]. Infrared and Laser Engineering, 2021, 50(2): 20200413. (in Chinese). doi: 10.3788/IRLA20200413
    [11] OHRING M. Materials Science of Thin Films[M]. 2nd ed. San Diego: Academic Press, 2001: 436-439.
    [12] 王凯旋, 陈刚, 刘定权, 等. 绿光波段60 pm超窄带滤光片的研制[J]. 中国光学,2022,15(1):119-131.

    WANG K X, CHEN G, LIU D Q, et al. Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band[J]. Chinese Optics, 2022, 15(1): 119-131. (in Chinese).
    [13] 田晓习. 光学薄膜技术中的基片与薄膜热力学匹配问题研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    TIAN X X. Study on thermodynamic matching between substrate and films in optical thin film technology[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Science), 2020. (in Chinese).
    [14] STONEY G G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(553): 172-175.
    [15] GRIGORIEV F V, SULIMOV V B, TIKHONRAVOV A V. Atomistic simulation of stresses in growing silicon dioxide films[J]. Coatings, 2020, 10(3): 220. doi: 10.3390/coatings10030220
    [16] 潘永刚, 林兆文, 王奔, 等. 深紫外大口径非球面反射膜的均匀性研究[J]. 中国光学(中英文),2022,15(4):740-746. doi: 10.37188/CO.2022-0005

    PAN Y G, LIN ZH W, WANG B, et al. Film thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. (in Chinese). doi: 10.37188/CO.2022-0005
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  111
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-07-06
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回