留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TDLAS气体激光遥测高灵敏光电探测电路设计

裴梓伊 胡朋兵 潘孙强 戚海洋 刘素梅 刘东

裴梓伊, 胡朋兵, 潘孙强, 戚海洋, 刘素梅, 刘东. TDLAS气体激光遥测高灵敏光电探测电路设计[J]. 中国光学(中英文), 2024, 17(1): 198-208. doi: 10.37188/CO.2023-0107
引用本文: 裴梓伊, 胡朋兵, 潘孙强, 戚海洋, 刘素梅, 刘东. TDLAS气体激光遥测高灵敏光电探测电路设计[J]. 中国光学(中英文), 2024, 17(1): 198-208. doi: 10.37188/CO.2023-0107
PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics, 2024, 17(1): 198-208. doi: 10.37188/CO.2023-0107
Citation: PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics, 2024, 17(1): 198-208. doi: 10.37188/CO.2023-0107

TDLAS气体激光遥测高灵敏光电探测电路设计

基金项目: 2022 年度“尖兵”“领雁”研发攻关计划项目(No. 2022C03065,No. 2022C03162,No. 2022C03084);浙江省市场监督管理局雏鹰计划 培育项目(No. CY2023001);浙江省市场监督管理局科研计划项目(No. QN2023419)
详细信息
    作者简介:

    裴梓伊(1998—),男,辽宁葫芦岛人,硕士研究生,2021年于哈尔滨工业大学获得学士学位,主要研究方向为光学检测技术。E-mail:ziyipei@zju.edu.cn

    刘 东(1982—),男,辽宁大连人,教授,博士,博士生导师,2005年、2010年于浙江大学分别获得学士、博士学位,曾在美国宇航局(NASA)从事博士后研究工作。主要研究方向为光学检测、激光雷达、机器视觉、深度学习。E-mail:liudongopt@zju.edu.cn

  • 中图分类号: O433.1;O433.4

Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry

Funds: Supported by the“Pioneer” and “Leading Goose” R&D Program of Zhejiang (No. 2022C03065,No. 2022C03162,No. 2022C03084); Science and Technology Plan Program, Eagle Plan Training Program of Marketing Surveillance & Administration Bureau of Zhejiang Province (No. QN2023419, No. CY2023001)
More Information
  • 摘要:

    针对气体激光遥测光信号微弱、环境因素干扰强等特点,结合波长调制技术,设计和研究了用于TDLAS激光遥测的高灵敏度光电探测电路(Highly Sensitive Photoelectric Detection Circuit, HSPDC)。基于波长调制技术,确定了TDLAS信号噪声抑制方法;采用光电二极管理想模型,分析了光电探测电路的线性响应特性并确定了光电二极管的关键参数;基于级联放大原理设计、仿真并对HSPDC进行测试。结果表明:所设计HSPDC的光功率检测下限为0.11 nW,信号衰减仅为0.79 dB(f=10 kHz),截止频率较现有108 V/A跨阻放大电路高一个数量级,可用于高速调制微弱光信号的探测。搭建了气体激光遥测系统,当调制频率为3 kHz时,激光遥测系统获得了良好的检测性能,检测灵敏度达到88.66 mV/ppm,检测限优于0.565 ppm,线性拟合度R2为0.9996。研究表明,研制的HSPDC光电探测电路具有响应速度快、检测灵敏度高等优点,可集成化,能满足气体激光遥测应用需求。

     

  • 图 1  各次谐波信号。(a)奇次谐波信号;(b)偶次谐波信号

    Figure 1.  Each harmonic signal. (a) Odd harmonic signal; (b) even harmonic signals

    图 2  PIN 光电二极管等效模型

    Figure 2.  Equivalent model of PIN photodiode

    图 3  不同RdI-IL 响应关系。(a) Rd=10 kΩ; (b) Rd=100 kΩ; (c) Rd=1 MΩ

    Figure 3.  I-IL response relationship with different Rd values. (a) Rd=10 kΩ; (b) Rd=100 kΩ; (c) Rd=1 MΩ

    图 4  光电探测电路原理示意图。(a) 跨阻放大电路;(b) 负反馈放大电路;(c) BW滤波电路

    Figure 4.  Schematic diagram of photoelectric detection circuit. (a) Cross resistance amplification circuit; (b) negative feedback amplification circuit; (c) BW filtering circuit

    图 5  光电探测电路仿真结果。(a) 各级放大电路输出信号;(b) 增益及相位频率响应特性

    Figure 5.  Photoelectric detection circuit simulation results. (a) Output signals of each stage of amplification circuit; (b) frequency response characteristic of gain and phase

    图 6  氨气激光遥测系统结构示意图

    Figure 6.  Structural diagram of ammonia laser telemetry system

    图 7  暗电流噪声信号。(a) HSPDC噪声;(b) TLB PDC 噪声

    Figure 7.  Dark current noise signal. (a) HSPDC noise; (b) TLB PDC noise

    图 8  遥测距离变化时系统输出信号。(a) HSPDC 输出信号;(b) TLB PDC 输出信号

    Figure 8.  System output signals when telemetry distance changes. (a) HSPDC output signal; (b) TLB PDC output signal

    图 9  二次谐波峰峰值及标准偏差随距离变化曲线

    Figure 9.  Curves of the second harmonic peak-to-peak value and standard deviation changing with distance

    图 10  信号峰峰值随调制频率变化曲线

    Figure 10.  Variation in signal peak-to-peak value with frequency

    图 11  系统输出二次谐波波形。(a) 气体浓度0.2%; (b) 气体浓度1%; (c) 气体浓度2%

    Figure 11.  System output second harmonic waveforms. (a) Gas concentration 0.2%; (b) gas concentration 1%; (c) gas concentration 2%

    图 12  调制信号 为 1 kHz和 3 kHz时系统浓度响应特性 曲线

    Figure 12.  System concentration response characteristic curves when modulation signal is 1 kHz and 3 kHz

  • [1] YU S F, ZHANG ZH, XIA H Y, et al. Photon-counting distributed free-space spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 212.
    [2] CHEN S J, TONG B W, RUSSELL L M, et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate[J]. Remote Sensing of Environment, 2022, 291: 113224.
    [3] XIAO D, WANG N CH, CHEN S J, et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar[J]. Science of the Total Environment, 2023, 872: 162091. doi: 10.1016/j.scitotenv.2023.162091
    [4] ZHANG K, CHEN Y T, ZHAO H K, et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J]. Research, 2023, 6: 0201. doi: 10.34133/research.0201
    [5] WANG N CH, ZHANG K, SHEN X, et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2110756119.
    [6] KE J, SUN Y SH, DONG CH ZH, et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 2022, 3: 17. doi: 10.1186/s43074-022-00063-3
    [7] WEN L, SUN ZH W, ZHENG Q L et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction[J]. Light:Science & Applications, 2023, 12: 76.
    [8] WU L M, YUAN X X, TANG Y X, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX, 2023, 4(1): 15. doi: 10.1186/s43074-023-00091-7
    [9] LEE J, YU E S, KIM T, et al. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX, 2023, 4(1): 20. doi: 10.1186/s43074-023-00097-1
    [10] ZHANG CH X, LIU CH, HU Q H, et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017[J]. Light:Science & Applications, 2021, 8: 100.
    [11] VLK M, DATTA A, ALBERTI S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 26.
    [12] DENG Y, FAN ZH F, ZHAO B B, et al. Mid-infrared hyperchaos of interband cascade lasers[J]. Light:Science & Applications, 2021, 11(1): 7.
    [13] MARINOV E, MARTINS R J, YOUSSEF M A B, et al. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J]. Advanced Photonics, 2023, 5(4): 046005.
    [14] HUANG ZH T, CHANG C Y, CHEN K P, et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J]. Advanced Photonics, 2022, 4(6): 066004.
    [15] 张志荣, 夏滑, 孙鹏帅, 等. 基于高灵敏激光吸收光谱技术的稳定气态同位素测量及其应用(特邀)[J]. 光子学报,2023,52(3):0352108. doi: 10.3788/gzxb20235203.0352108

    ZHANG ZH R, XIA H, SUN P SH, et al. Stable gaseous isotope measurement method based on highly sensitive laser absorption spectroscopy and its applications (invited)[J]. Acta Photonica Sinica, 2023, 52(3): 0352108. (in Chinese). doi: 10.3788/gzxb20235203.0352108
    [16] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese). doi: 10.37188/CO.2019-0203
    [17] 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程,2021,48(9):200451.

    ZHANG W J, ZENG X L, YANG A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electronic Engineering, 2021, 48(9): 200451. (in Chinese).
    [18] 姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国激光,2015,42(2):0215003. doi: 10.3788/CJL201542.0215003

    YAO L, LIU W Q, LIU J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003. (in Chinese). doi: 10.3788/CJL201542.0215003
    [19] XIN F X, LI J, GUO J J, et al. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J]. Sensors, 2021, 21(5): 1722. doi: 10.3390/s21051722
    [20] REN L, WANG X CH, HUANG G R, et al. Contribution of microchannel plate luminescence to the noise of 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1022: 165973.
    [21] SUZUKI S, NAMEKATA N, TSUJINO K, et al. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode[J]. Applied Physics Letters, 2014, 104(4): 041105. doi: 10.1063/1.4861645
    [22] 顾宇强, 谭明, 吴渊渊, 等. 具有优化倍增层InAlAs/InGaAs雪崩光电二极管[J]. 红外与毫米波学报,2021,40(6):715-720.

    GU Y Q, TAN M, WU Y Y, et al. InAlAs/InGaAs avalanche photodiode with an optimized multiplication layer[J]. J. Infrared Millim. Waves, 2021, 40(6): 715-720. (in Chinese).
    [23] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi: 10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029
    [24] 王彪, 鹿洪飞, 李奥奇, 等. 采用VCSEL激光光源的TDLAS甲烷检测系统的研制[J]. 红外与激光工程,2020,49(4):0405002. doi: 10.3788/IRLA202049.0405002

    WANG B, LU H F, LI A Q, et al. Research of TDLAS methane detection system using VCSEL laser as the light source[J]. Infrared and Laser Engineering, 2020, 49(4): 0405002. (in Chinese). doi: 10.3788/IRLA202049.0405002
    [25] CIURA Ł, KOLEK A, GAWRON W, et al. Measurements of low frequency noise of infrared photo-detectors with transimpedance detection system[J]. Metrology and Measurement Systems, 2014, 21(3): 461-472. doi: 10.2478/mms-2014-0039
    [26] 梁万国, 罗森林, 周思永, 等. 光电探测器的设计[J]. 半导体光电,1998,19(1):52-56. doi: 10.16818/j.issn1001-5868.1998.01.015

    LIANG W G, LUO S L, ZHOU S Y, et al. Design of photodetector[J]. Semiconductor Optoelectronics, 1998, 19(1): 52-56. (in Chinese). doi: 10.16818/j.issn1001-5868.1998.01.015
    [27] NICODEMUS F E, RICHMOND J C, HSIA J J, et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01). https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance.
    [28] 张雷雷, 曹振松, 钟磬, 等. FPGA主控型数字锁相放大器设计及光谱测量[J]. 红外与激光工程,2023,52(10):20230023.

    ZHANG L L, CAO Z S, ZHONG Q, et al. Digital lock-in amplifier controlled by FPGA for spectral measurement[J]. Infrared and Laser Engineering, 2023, 52(10): 20230023.
  • 加载中
图(12)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  192
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-07-20
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回