留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合全局和局部信息的铁谱图像自动对焦算法

刘信良 张龙泉 冷晟 王静秋 王晓雷

刘信良, 张龙泉, 冷晟, 王静秋, 王晓雷. 融合全局和局部信息的铁谱图像自动对焦算法[J]. 中国光学(中英文), 2024, 17(2): 423-434. doi: 10.37188/CO.2023-0124
引用本文: 刘信良, 张龙泉, 冷晟, 王静秋, 王晓雷. 融合全局和局部信息的铁谱图像自动对焦算法[J]. 中国光学(中英文), 2024, 17(2): 423-434. doi: 10.37188/CO.2023-0124
LIU Xin-liang, ZHANG Long-quan, LENG Sheng, WANG Jing-qiu, WANG Xiao-lei. An autofocus algorithm for fusing global and local information in ferrographic images[J]. Chinese Optics, 2024, 17(2): 423-434. doi: 10.37188/CO.2023-0124
Citation: LIU Xin-liang, ZHANG Long-quan, LENG Sheng, WANG Jing-qiu, WANG Xiao-lei. An autofocus algorithm for fusing global and local information in ferrographic images[J]. Chinese Optics, 2024, 17(2): 423-434. doi: 10.37188/CO.2023-0124

融合全局和局部信息的铁谱图像自动对焦算法

基金项目: 直升机传动技术重点实验室基金项目(No. HTL-A-21G03)
详细信息
    作者简介:

    王静秋(1972—),女,辽宁抚顺人,博士,教授,1994年、1999年、2014年于南京航空航天大学分别获得学士、硕士、博士学位,主要从事摩擦学、计算机图像处理、分子动力学模拟等方向的研究。E-mail:meejqwang@nuaa.edu.cn

  • 中图分类号: TP391.4;TH117.2

An autofocus algorithm for fusing global and local information in ferrographic images

Funds: Supported by National Key Laboratory of Science and Technology on Helicopter Transmission (No. HTL-A-21G03)
More Information
  • 摘要:

    针对铁谱图像获取时人工对焦误差大、速度慢等问题,提出了一种融合全局信息和局部信息的铁谱图像自动对焦方法。此方法分为两个阶段:全局对焦阶段利用卷积神经网络(Convolutional Neural Networks,CNN)提取整幅图像的特征向量,并利用门控循环单元(Gate Recurrent Unit,GRU)融合对焦过程提取的特征,预测当前全局离焦距离,起到粗对焦的作用;局部对焦阶段提取磨粒的特征向量,利用GRU融合当前特征与前一轮对焦提取的特征,并依据最厚磨粒信息,预测当前磨粒离焦距离,起到精对焦的作用。同时,为了提高对焦准确率,提出了结合拉普拉斯梯度的对焦方向判定法。实验结果表明,此算法在测试集上的对焦误差为2.51 μm,当景深为2.0 μm时对焦准确率为80.1%,平均对焦时间为0.771 s。本文提出的自动对焦方法具有较好的性能,为铁谱图像自动准确采集提供了技术支持。

     

  • 图 1  自动对焦算法框架

    Figure 1.  Framework of autofocus algorithm

    图 2  (a)全局自动对焦模块结构图及(b)DBL结构和(c)ResBlock结构

    Figure 2.  (a) Schematic diagram of global autofocus module structure, (b) DBL structure and (c) ResBlock structure

    图 3  离焦距离回归网络结构图

    Figure 3.  The structure of defocus distance regression network

    图 4  (a)局部自动对焦模块结构图;(b)Upsample结构图及(c)Concat结构图

    Figure 4.  (a) Structure diagram of local autofocus module. (b) Upsample structure. (c) Concat structure

    图 5  对焦方向判定

    Figure 5.  Determination of focus direction

    图 6  图像采集平台

    Figure 6.  Image acquisition platform

    图 7  图像序列的拉普拉斯清晰度曲线

    Figure 7.  Laplacian sharpness curves of an image sequence

    图 8  自动对焦过程

    Figure 8.  Autofocus process

    图 9  不同输入图像的对焦结果

    Figure 9.  Focus results for different input images

    图 10  4组图像序列的对焦结果

    Figure 10.  Focusing results of 4 groups of image sequences

    图 11  本方法测试集上自动对焦的结果

    Figure 11.  Autofocus results of proposed method on the test set

    图 12  4组消融实验的对焦结果

    Figure 12.  Focusing results of four ablation experiments

    表  1  对焦过程中每一步的结果

    Table  1.   Results of each step in the focusing process

    ith step dist (frame) Accdof-1 Accdof-3 Accdof-5 AT (s)
    1 63.649±12.960 0.017±0.009 0.039±0.017 0.061±0.027 0.118±0.034
    2 22.678±6.408 0.061±0.026 0.133±0.583 0.202±0.086 0.115±0.027
    3 15.404±5.660 0.134±0.062 0.257±0.125 0.346±0.153 0.118±0.041
    4 10.891±4.205 0.194±0.076 0.364±0.135 0.474±0.152 0.138±0.027
    5 7.393±3.235 0.288±0.102 0.523±0.145 0.666±0.141 0.140±0.019
    6 6.271±2.680 0.360±0.130 0.651±0.149 0.801±0.125 0.143±0.018
    下载: 导出CSV

    表  2  消融实验的结果

    Table  2.   Results of ablation experiments

    消融实验序号GRUFocus strategyLAFdist (frame)Accdof-1Accdof-3Accdof-5
    消融实验129.496±16.8820.345±0.1500.578±0.1630.663±0.157
    消融实验281.259±71.5610.032±0.0470.068±0.0920.111±0.123
    消融实验3101.528±71.4570.023±0.0290.056±0.0590.084±0.086
    消融实验428.046±20.2250.253±0.1460.484±0.2020.626±0.216
    本文算法6.271±2.6800.360±0.1300.651±0.1490.801±0.125
    下载: 导出CSV

    表  3  不同自动对焦算法的结果

    Table  3.   Results of different autofocus algorithms

    序号 算法 dist (frame) Accdof-1 Accdof-3 Accdof-5 AT (s)
    1 整图全局搜索法 8.647 0.107 0.321 0.536 17.856
    2 图像块全局搜索法 8.603 0.179 0.357 0.607 22.068
    3 爬山法 12.926 0.286 0.464 0.500 1.459
    4 HH-Net 27.177 0.036 0.179 0.429 0.119
    5 Autofocus-RNN 31.839 0.321 0.429 0.571 0.419
    6 本文算法 6.271 0.360 0.651 0.801 0.771
    下载: 导出CSV
  • [1] ROYLANCE B J. Ferrography—then and now[J]. Tribology International, 2005, 38(10): 857-862. doi: 10.1016/j.triboint.2005.03.006
    [2] WANG J Q, WANG X L. The segmentation of ferrography images: a brief survey[J]. Materials Science Forum, 2013, 770: 427-432. doi: 10.4028/www.scientific.net/MSF.770.427
    [3] 卿华, 王新军. 飞机油液监控技术[M]. 北京: 航空工业出版社, 2011.

    QING H, WANG X J. Aircraft oil Monitoring Technology[M]. Beijing: Aviation Industry Press, 2011. (in Chinese).
    [4] 叶一青, 易定容, 张勇贞, 等. 基于倾斜摄像头的显微自动对焦方法[J]. 光学学报,2019,39(12):1218001. doi: 10.3788/AOS201939.1218001

    YE Y Q, YI D R, ZHANG Y ZH, et al. Microscopy autofocus method using tilt camera[J]. Acta Optica Sinica, 2019, 39(12): 1218001. (in Chinese). doi: 10.3788/AOS201939.1218001
    [5] BATHE-PETERS M, ANNIBALE P, LOHSE M J. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser[J]. Optics Express, 2018, 26(3): 2359-2368. doi: 10.1364/OE.26.002359
    [6] ZHANG X, ZENG F, LI Y, et al. Improvement in focusing accuracy of DNA sequencing microscope with multi-position laser differential confocal autofocus method[J]. Optics Express, 2018, 26(2): 895-904.
    [7] 唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. 中国光学,2021,14(6):1486-1494. doi: 10.37188/CO.2021-0040

    TANG L Y, GE M F, DONG W F. Design and research of fully automatic push-broom hyperspectral microscopic imaging system[J]. Chinese Optics, 2021, 14(6): 1486-1494. (in Chinese). doi: 10.37188/CO.2021-0040
    [8] JANG J, YOO Y, KIM J, et al. Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching[J]. Sensors, 2015, 15(3): 5747-5762. doi: 10.3390/s150305747
    [9] GUO K K, LIAO J, BIAN Z CH, et al. InstantScope: a low-cost whole slide imaging system with instant focal plane detection[J]. Biomedical Optics Express, 2015, 6(9): 3210-3216. doi: 10.1364/BOE.6.003210
    [10] GAN Y H, YE Z T, HAN Y B, et al. Single-shot autofocusing in light sheet fluorescence microscopy with multiplexed structured illumination and deep learning[J]. Optics and Lasers in Engineering, 2023, 168: 107663. doi: 10.1016/j.optlaseng.2023.107663
    [11] HOU S B, ZHANG H Y, MA B L, et al. Extended autofocusing in dual-wavelength digital holography[J]. Applied Optics, 2023, 62(22): 5959-5968. doi: 10.1364/AO.494696
    [12] 郭立强, 刘恋. 结合斜变换与方差的图像聚焦测度[J]. 光学 精密工程,2021,29(7):1731-1739. doi: 10.37188/OPE.2020.0555

    GUO L Q, LIU L. Image focus measure based on slant transform and variance[J]. Optics and Precision Engineering, 2021, 29(7): 1731-1739. (in Chinese). doi: 10.37188/OPE.2020.0555
    [13] LIAO Y, XIONG Y H, YANG Y H. An auto-focus method of microscope for the surface structure of transparent materials under transmission illumination[J]. Sensors, 2021, 21(7): 2487. doi: 10.3390/s21072487
    [14] NOEK R, KNOERNSCHILD C, MIGACZ J, et al. Multiscale optics for enhanced light collection from a point source[J]. Optics Letters, 2010, 35(14): 2460-2462. doi: 10.1364/OL.35.002460
    [15] SHAJKOFCI A, LIEBLING M. Semi-blind spatially-variant deconvolution in optical microscopy with local point spread function estimation by use of convolutional neural networks[C]. Proceedings of 25th IEEE International Conference on Image Processing, IEEE, 2018.
    [16] FARNES S A R, TSAI D M, CHIU W Y. Autofocus measurement for electronic components using deep regression[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 697-707. doi: 10.1109/TCPMT.2021.3060809
    [17] GE Y H, LI B, ZHAO Y ZH, et al. HH-Net: image driven microscope fast auto-focus with deep neural network[C]. Proceedings of the 9th International Conference on Biomedical Engineering and Technology, Association for Computing Machinery, 2019: 180-185.
    [18] XIANG Y, HE ZH J, LIU Q, et al. Autofocus of whole slide imaging based on convolution and recurrent neural networks[J]. Ultramicroscopy, 2021, 220: 113146. doi: 10.1016/j.ultramic.2020.113146
    [19] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J/OL]. arXiv: 1804.02767, 2018.
    [20] HE K M, ZHANG X Y, REN SH Q, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  131
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-08-24
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回