留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属-介质-金属的可调谐窄带完美吸收的研究

王晓坤 李周 梁国龙

王晓坤, 李周, 梁国龙. 基于金属-介质-金属的可调谐窄带完美吸收的研究[J]. 中国光学(中英文), 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125
引用本文: 王晓坤, 李周, 梁国龙. 基于金属-介质-金属的可调谐窄带完美吸收的研究[J]. 中国光学(中英文), 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125
WANG Xiao-kun, LI Zhou, LIANG Guo-long. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125
Citation: WANG Xiao-kun, LI Zhou, LIANG Guo-long. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125

基于金属-介质-金属的可调谐窄带完美吸收的研究

doi: 10.37188/CO.2023-0125
基金项目: 国家自然科学基金(No. 62105330)
详细信息
    作者简介:

    王晓坤(1980—),女,吉林靖宇人,博士,副教授,2003年于长春大学获得学士学位,2009年、2016年于长春理工大学分别获得硕士、博士学位,现就职于空军航空大学,主要从事军事装备保障等方面的研究。E-mail:wxk_90046@163.com

    李 周(1989—),男,山东临沂人,博士,2018年于中国科学院大学获得博士学位,现工作于中国科学院长春光学精密机械与物理研究所,主要从事红外辐射特性测量系统的定标和非均匀性校正方法方面的研究。E-mail:15500027661@163.com

  • 中图分类号: TP394.1;TH691.9

Tunable narrow-band perfect absorber based on metal-dielectric-metal

Funds: Supported by National Natural Science Foundation of China (No. 62105330)
More Information
  • 摘要:

    为了实现窄带完美吸收,本文提出了一种简单的三层金-二氧化硅-金薄膜(MDM)结构。通过电磁波时域差分算法(FDTD)进行模拟仿真和理论计算,详细分析了该结构的可调谐吸收特性,同时建立了理论模型,分析了其中存在的电磁模式以及窄带完美吸收的物理机制。首先,利用电磁波时域差分算法和传输矩阵算法(TMM)对该结构进行了理论计算,详细地分析了各个结构参数对吸收光谱的影响。然后,对该结构形成的窄带完美吸收物理机制进行了分析讨论。最后,利用磁控溅射制备手段,成功制备了三层结构的样片。实验观测到的结果与理论仿真一致。实验结果表明:本文提出的窄带完美吸收结构,最窄带宽约为21 nm,最高吸收可达99.51%,基本实现了窄带完美吸收。本文研究成果为相关应用奠定了基础。

     

  • 图 1  提出的三层金-氧化硅-金薄膜结构示意图

    Figure 1.  Schematic diagram of the proposed three-layered Au-SiO2-Au thin film structure

    图 2  模拟仿真的MDM结构吸收光谱,该结构中d1d2d3分别为100 nm、580 nm和30 nm。

    Figure 2.  Simulated absorption spectra of MDM structure with thicknesses d1, d2 and d3 of 100 nm, 580 nm, and 30 nm, respectively

    图 3  共振时腔层内的电场分布仿真结果

    Figure 3.  Simulated electric field distribution in the cavity when the FP mode resonance was formed

    图 4  不同顶层金属膜厚度下吸收率的仿真结果。 (a) 单层金薄膜的吸收率。(b) MDM三层结构的吸收率,此时中间层氧化硅厚度固定为125 nm

    Figure 4.  Simulated results of absorption at different thicknesses of the top Au layer. (a) Simulated absorption curves of single Au film with various thicknesses. (b) Simulated absorption curves of MDM three-layer structure with various thicknesses of the top Au layers, when the thickness of the intermediate silicon oxide is fixed at 125 nm

    图 5  (a)入射光通过单层薄膜示意图。(b)等效界面示意图

    Figure 5.  (a) Schematic diagram of incident light passing through a single layer film. (b) Schematic diagram of equivalent interface of single layer

    图 6  模拟仿真三层MDM结构的(a)反射率与(b)吸收率,中间层厚度d2分别为85 nm、105 nm、125 nm、155 nm、175 nm

    Figure 6.  (a) Reflection and (b) absorption spectra of MDM structure simulated by FDTD method with various SiO2 thicknesses of 85 nm, 105 nm, 125 nm, 155 nm, 175 nm, respectively

    图 7  共振波长与非共振波长处腔层内电场分布仿真结果,此时三层薄膜厚度依次为100 nm、125 nm、30 nm

    Figure 7.  Simulated electric field distributions in the cavity at the non-resonant and resonant wavelengths, with various three-layer thicknesses of 100 nm, 125 nm and 30 nm

    图 8  当中间层厚度为125 nm,共振波长543 nm处的吸收分布模拟结果

    Figure 8.  Simulated absorption distribution at the resonance wavelength of 543 nm with an intermediate layer of 125 nm

    图 9  计算出的共振以及非共振波长处的欧姆损耗,此时膜层厚度依次为100 nm、125 nm、30 nm

    Figure 9.  The calculated total Ohmic loss at the non-resonant and resonant wavelength when the three layers thicknesses are 100 nm, 125 nm and 30 nm, respectively

    图 10  当中间层氧化硅厚度为580 nm时,模拟仿真和实验测得的吸收曲线对比结果

    Figure 10.  Comparison of simulated and experimentally measured absorption curves with an intermediate silicon oxide layer thickness of 580 nm

    图 11  5种样片吸收光谱的模拟仿真与实测结果对比

    Figure 11.  Comparison of the simulated and experimentally measured absorption spectra of the five samples

    表  2  FDTD模拟仿真、传输矩阵算法计算结果以及实验测试结果对比

    Table  2.   Comparison of FDTD simulation, transmission matrix algorithm calculation results, and experimental test results

    d2(nm) 仿真结果 理论计算 测试结果
    共振
    波长(nm)
    最高
    吸收
    共振
    波长(nm)
    最高
    吸收
    共振
    波长(nm)
    最高
    吸收
    半波宽
    (nm)
    85 435 0.9710 438 0.9817 437 0.9831 55
    105 485 0.9799 486 0.9755 483 0.9822 31
    125 546 0.9872 541 0.9865 540 0.9951 27
    155 620 0.9942 622 0.9910 625 0.9843 22
    175 669 0.9959 674 0.9976 672 0.9857 21
    下载: 导出CSV

    表  1  镀制Au和SiO2薄膜的工艺参数

    Table  1.   Process parameters for Au and SiO2 thin films

    溅射功率 氩气 氧气 成膜速率 真空度
    Au 100 W 80 sccm 0 0.4 nm/s 1.1 Pa
    SiO2 120 W 80 sccm 15 sccm 0.2 nm/s 1.1 Pa
    下载: 导出CSV
  • [1] WATTS C M, LIU X L, PADILLA W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials, 2012, 24(23): OP98-OP120.
    [2] YONG ZH D, ZHANG S L, GONG CH SH, et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications[J]. Scientific Reports, 2016, 6: 24063. doi: 10.1038/srep24063
    [3] TYSON J J, SCHEUL T E, RAHMAN T, et al. Characterising the broadband, wide–angle reflectance properties of black silicon surfaces for photovoltaic applications[J]. Optics Express, 2023, 31(17): 28295-28307. doi: 10.1364/OE.496448
    [4] AZAD A K, KORT-KAMP W J M, SÝKORA M, et al. Metasurface broadband solar absorber[J]. Scientific Reports, 2016, 6: 20347. doi: 10.1038/srep20347
    [5] NAGARAJAN A, VIVEK K, SHAH M, et al. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration[J]. Advanced Optical Materials, 2018, 6(16): 1800253. doi: 10.1002/adom.201800253
    [6] LI W, VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6): 3510-3514. doi: 10.1021/nl501090w
    [7] DING H, WU SH L, ZHANG CH, et al. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays[J]. Optics Express, 2020, 28(5): 6511-6520. doi: 10.1364/OE.387339
    [8] DANA B D, JI B Y, LIN J Q, et al. Hybrid plasmonic modes for enhanced refractive index sensing[J]. Advanced Sensor Research, 2023.
    [9] BALLEW C, ROBERTS G, FARAON A. Multi-dimensional wavefront sensing using volumetric meta-optics[J]. Optics Express, 2023, 31(18): 28658-28669. doi: 10.1364/OE.492440
    [10] PARK B, YUN S H, CHO C Y, et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors[J]. Light:Science & Applications, 2014, 3(12): e222.
    [11] LU X Y, ZHANG T Y, WAN R G, et al. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface[J]. Optics Express, 2018, 26(8): 10179-10187. doi: 10.1364/OE.26.010179
    [12] ZHANG L J, LU W K, ZHU L P, et al. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing[J]. Optics Express, 2023, 31(19): 31024-31038. doi: 10.1364/OE.498114
    [13] 张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究[J]. 中国光学(中英文),2023,16(4):961-971. doi: 10.37188/CO.EN-2023-0008

    ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. (in Chinese). doi: 10.37188/CO.EN-2023-0008
    [14] 刘强, 赵锦, 孙宇丹, 等. 基于表面等离子体共振的光子准晶体光纤甲烷氢气传感器[J]. 中国光学(中英文),2023,16(1):174-183. doi: 10.37188/CO.EN.2022-0006

    LIU Q, ZHAO J, SUN Y D, et al. A novel methane and hydrogen sensor with surface plasmon resonance-based photonic quasi-crystal fiber[J]. Chinese Optics, 2023, 16(1): 174-183. (in Chinese). doi: 10.37188/CO.EN.2022-0006
    [15] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624. doi: 10.37188/CO.2021-0219

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese). doi: 10.37188/CO.2021-0219
    [16] COSTANTINI D, LEFEBVRE A, COUTROT A L, et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Physical Review Applied, 2015, 4(1): 014023. doi: 10.1103/PhysRevApplied.4.014023
    [17] LIU X L, TYLER T, STARR T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4): 045901. doi: 10.1103/PhysRevLett.107.045901
    [18] AMELING R, DREGELY D, GIESSEN H. Strong coupling of localized and surface plasmons to microcavity modes[J]. Optics Letters, 2011, 36(12): 2218-2220. doi: 10.1364/OL.36.002218
    [19] YU L, LIANG Y ZH, GAO H X, et al. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios[J]. Optics Express, 2022, 30(2): 2006-2017. doi: 10.1364/OE.446195
    [20] QIN ZH, SHI X Y, YANG F M, et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring[J]. Optics Express, 2022, 30(1): 473-483. doi: 10.1364/OE.446655
    [21] HU X L, SUN L B, ZENG B B, et al. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission[J]. Applied Optics, 2016, 55(1): 148-152. doi: 10.1364/AO.55.000148
    [22] RAKHSHANI M R, RASHKI M. Metamaterial perfect absorber using elliptical nanoparticles in a multilayer metasurface structure with polarization independence[J]. Optics Express, 2022, 30(7): 10387-10399. doi: 10.1364/OE.454298
    [23] DING T, SIGLE D, ZHANG L W, et al. Controllable tuning plasmonic coupling with nanoscale oxidation[J]. ACS Nano, 2015, 9(6): 6110-6118. doi: 10.1021/acsnano.5b01283
    [24] KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1): 20-24. doi: 10.1038/nmat3443
    [25] PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1998.
    [26] HAO J M, ZHOU L, QIU M. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107. doi: 10.1103/PhysRevB.83.165107
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  84
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!