留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纸膜双层缺陷检测的视觉成像光场设计

蒋仕飞 张兆国 王法安 解开婷 王成琳 李治

蒋仕飞, 张兆国, 王法安, 解开婷, 王成琳, 李治. 纸膜双层缺陷检测的视觉成像光场设计[J]. 中国光学(中英文), 2024, 17(2): 354-365. doi: 10.37188/CO.2023-0134
引用本文: 蒋仕飞, 张兆国, 王法安, 解开婷, 王成琳, 李治. 纸膜双层缺陷检测的视觉成像光场设计[J]. 中国光学(中英文), 2024, 17(2): 354-365. doi: 10.37188/CO.2023-0134
JIANG Shi-fei, ZHANG Zhao-guo, WANG Fa-an, XIE Kai-ting, WANG Cheng-lin, LI Zhi. Design of optical field of vision imaging for defect detection of paper and transparent film[J]. Chinese Optics, 2024, 17(2): 354-365. doi: 10.37188/CO.2023-0134
Citation: JIANG Shi-fei, ZHANG Zhao-guo, WANG Fa-an, XIE Kai-ting, WANG Cheng-lin, LI Zhi. Design of optical field of vision imaging for defect detection of paper and transparent film[J]. Chinese Optics, 2024, 17(2): 354-365. doi: 10.37188/CO.2023-0134

纸膜双层缺陷检测的视觉成像光场设计

基金项目: 国家重点研发计划项目(No. 2022YFD2002004);云南省院士(专家)工作站项目(No. 202105AF150030);云南中烟重点项目(No. 2022ZK05)
详细信息
    作者简介:

    蒋仕飞(1987—),男,云南昭通人,博士研究生,工程师,2014年于昆明理工大学获得硕士学位,主要从事机器视觉及自动检测方面的研究。E-mail:20211103008@stu.kust.edu.cn

    王法安(1990—),男,河南信阳人,博士,硕士生导师,2014年于安阳工学院获得学士学位,2017年于昆明理工大学获得硕士学位,2022年于东南大学获得博士学位,主要从事智能机械装备设计制造研究等方面的研究。E-mail:wfa@kust.edu.cn

  • 中图分类号: TB811;TB858.2

Design of optical field of vision imaging for defect detection of paper and transparent film

Funds: Supported by National Key R & D Program of China (No. 2022YFD2002004); Yunnan Province Academician (Expert) Workstation Project (No. 202105AF150030); Key Project of China Tobacco Industry in Yunnan (No. 2022ZK05)
More Information
  • 摘要:

    为实现包装盒纸质基底层和透明膜层缺陷的同步检测,开展了对纸和膜缺陷的同步成像研究。首先,分别建立了标准球面积分光场、椭球面积分光场和弧面积分光场模型,并利用COMSOL Multiphysics 5.6对3类光场进行射线仿真,对比分析了球面积分光场下射线角度均匀性及辐照均匀性,通过正交仿真优化椭球面积分光场参数;其次,在椭球面积分光场环境、亮场前打光环境、暗场前打光环境下对包装盒成像。与此同时,对包装盒的油污、抵触、开口、泡皱、破损5项常见缺陷依次进行物理检测和机器视觉检测,验证缺陷成像的有效性。试验结果表明,在椭球面积分光场下成像,图像对纸质基底层缺陷特征、透明膜层缺陷特征均有较好的呈现效果,图像上油污、抵触、开口、泡皱、破损的物理检出率分别为96.2%、92.5%、100%、95%、92%,异常检出率分别为98.6%、97.5%、100%、100%、98.4%,缺陷类别检出率分别为97.6%、96%、100%、97%、96%。研究结果表明,椭球面积分光场光路角度和辐照强度均匀,覆透明膜包装盒的缺陷特征呈现清晰,满足工业生产的检测要求。

     

  • 图 1  亮场前打光方式对纸质基底层的成像

    Figure 1.  Imaging of paper in bright field forward lighting

    图 2  暗场前打光方式对透明膜的成像

    Figure 2.  Imaging of transparent film in dark field forward lighting

    图 3  曲面反射光路图

    Figure 3.  Optical path diagram of curved surface reflection

    图 4  标准球面积分光场模型

    Figure 4.  Spherical integral light field model

    图 5  椭球面内球面积分光场模型

    Figure 5.  Ellipsoidal integral light field model

    图 6  弧面积分光场模型

    Figure 6.  Arc-area integral light field model

    图 7  射线以(a)30°、(b)45°、(c)60°向上释放的球面光场光路

    Figure 7.  Optical paths of a spherical light field with rays emitted upward at (a) 30°, (b) 45°, (c) 60°

    图 8  在长半轴端射线以(a)30°、(b)45°、(c)60°向上释放的椭球面光场光路

    Figure 8.  Optical paths of an ellipsoidal light field with rays emitted upward at the end of semi-major axis at (a) 30°, (b) 45°, (c) 60°

    图 9  在短半球端射线以(a)30°、(b)45°、(c)60°向上释放的椭球面光场光路

    Figure 9.  Optical paths of an ellipsoidal light field with rays emitted upward at the end of short haff-shaft at (a) 30°, (b) 45°, (c) 60°

    图 10  弧面积分光场仿真结果

    Figure 10.  Simulation results of arc-area integral light field

    图 11  半径比与投射口距离对辐照比的响应曲面

    Figure 11.  Response surface plotted by three coefficients, ie., radius radio, projection port distance, and irradiation ratio

    图 12  半径比与辐照面距离对辐照比的响应曲面

    Figure 12.  Response surface plotted by three coefficients, i.e., radius ratio, irradiation surface distance, and irradiation ratio

    图 13  成像系统结构设计图

    Figure 13.  Structural design graph of imaging system

    图 14  试验设备

    Figure 14.  Experiment equipment

    图 15  前打光环境成像装置

    Figure 15.  Imaging device of forward lighting field

    图 16  包装盒缺陷图像

    Figure 16.  Defect images of packaging box

    图 17  不同光环境下成像缺陷比例

    Figure 17.  Presentation rates of imaging defects under different light fields

    图 18  PaDiM异常检测的patch 嵌入向量与定位分割

    Figure 18.  Patch embedding vector and location segmentation of PaDiM abnormal detection

    图 19  缺陷的异常检测和类别检测结果

    Figure 19.  Abnormal detection and classification detection results of defects

    图 20  缺陷检出率雷达图

    Figure 20.  Radar map of defects detection rate

    表  1  3种光场主要参数

    Table  1.   Main parameters of the three types of integrated light fields

    光场类型光罩尺寸A
    ×B×H/mm
    半径RR1×R2×R3/mm投射口距
    S/mm
    辐照面
    距离C/mm
    标准球面积分光场180×180×130853520
    椭球面积
    分光场1
    180×180×11085×65×653520
    椭球面积
    分光场2
    180×180×11065×85×653520
    弧面积
    分光场
    180×130×130853520
    下载: 导出CSV

    表  2  因素水平表

    Table  2.   Coding table of experimental factors and levels

    水平因素
    半径比(R1/R2投射口距离S/(mm)辐照面距离C/( mm)
    11.1305
    01.33517.5
    -11.54030
    下载: 导出CSV

    表  3  试验方案与结果

    Table  3.   Experimental scheme and results

    序号因素辐照比Q/%
    R1/R2S/(mm)C/( mm)
    11.3403080
    21.135576
    31.535574
    41.33517.592
    51.13017.576
    61.3303082
    71.5353070
    81.33517.590
    91.33517.590
    101.54017.570
    111.330586
    121.340584
    131.33517.592
    141.33517.592
    151.14017.574
    161.1353072
    171.53017.572
    下载: 导出CSV

    表  4  方差分析

    Table  4.   Variance analysis

    变异来源 平方和 自由度 均方 F P
    模型 1104.73 9 122.75 126.36 < 0.0001***
    R1:R2 18.00 1 18.00 18.53 0.0035***
    S 8.00 1 8.00 8.24 0.0240**
    C 32.00 1 32.00 32.94 0.0007***
    残差 6.80 7 0.9714
    失拟 2.00 3 0.6667 0.5556 0.6716
    误差 4.80 4 1.20
    总和 1111.53 16
    注:**表示影响显著(P<0.05),***表示影响极显著(P<0.01)
    下载: 导出CSV

    表  5  缺陷检出数量统计

    Table  5.   Statistics on detected defects

    缺陷类别缺陷数量椭球面积分光场环境亮场前打光环境暗场前打光环境
    缺陷检出数量缺陷检出率/%缺陷检出数量缺陷检出率/%缺陷检出数量缺陷检出率/%
    油污21320596.220696.713864.8
    抵触807492.576955467.5
    开口5050100501003876
    泡皱98939564659395
    破损12511592745911692.8
    下载: 导出CSV

    表  6  图像缺陷的机器视觉检测结果

    Table  6.   Machine Vision detection results of image defects

    缺陷
    类别
    缺陷
    数量
    椭球面积分光场环境亮场前打光环境暗场前打光环境
    异常检
    出数量
    异常检
    出率/%
    类别检出
    数量
    类别
    检出率/%
    异常检
    出数量
    异常检
    出率/%
    类别检出
    数量
    类别
    检出率/%
    异常检
    出数量
    异常检
    出率/%
    类别检出
    数量
    类别
    检出率/%
    油污21321098.620897.621098.621098.614065.714065.7
    抵触807897.575967998.77897.560756277.5
    开口505010050100501005010038764080
    泡皱989810095977071.4676895979597
    破损12512398.4120968265.580641209612297.6
    下载: 导出CSV
  • [1] 姜涛, 张桂林, 高俊鹏. 面向机器视觉检测的缸体横孔照明[J]. 中国光学,2020,13(6):1285-1292. doi: 10.37188/CO.2020-0054

    JIANG T, ZHANG G L, GAO J P. Illumination of a cylinder block transverse hole for machine vision inspection[J]. Chinese Optics, 2020, 13(6): 1285-1292. (in Chinese). doi: 10.37188/CO.2020-0054
    [2] 梁霄, 李家炜, 赵小龙, 等. 基于深度学习的红外目标成像液位检测方法[J]. 光学学报,2021,41(21):2110001. doi: 10.3788/AOS202141.2110001

    LIANG X, LI J W, ZHAO X L, et al. Infrared target imaging liquid level detection method based on deep learning[J]. Acta Optica Sinica, 2021, 41(21): 2110001. (in Chinese). doi: 10.3788/AOS202141.2110001
    [3] 赵鹏鹏, 李庶中, 李迅, 等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学,2022,15(2):267-275. doi: 10.37188/CO.2021-0170

    ZHAO P P, LI SH ZH, LI X, et al. Infrared dim small target detection based on visual saliency and local entropy[J]. Chinese Optics, 2022, 15(2): 267-275. (in Chinese). doi: 10.37188/CO.2021-0170
    [4] 王荣昌, 王峰, 任帅军, 等. 基于双流融合网络的单兵伪装偏振成像检测[J]. 光学学报,2022,42(9):0915001.

    WANG R CH, WANG F, REN SH J, et al. Polarization imaging detection of individual camouflage based on two-stream fusion network[J]. Acta Optica Sinica, 2022, 42(9): 0915001. (in Chinese).
    [5] 金鹏, 黄浩, 刘检华, 等. 多传感器信息融合的铁路扣件缺陷检测方法[J]. 机械工程学报,2021,57(20):38-46. doi: 10.3901/JME.2021.20.038

    JIN P, HUANG H, LIU J H, et al. Fault detection method of railway fastener combined with multi-sensor information[J]. Journal of Mechanical Engineering, 2021, 57(20): 38-46. (in Chinese). doi: 10.3901/JME.2021.20.038
    [6] 余佳杰, 周建平, 薛瑞雷, 等. 基于结构光视觉和光照模型的焊缝表面质量检测[J]. 中国激光,2022,49(16):1602019.

    YU J J, ZHOU J P, XUE R L, et al. Weld surface quality detection based on structured light and illumination model[J]. Chinese Journal of Lasers, 2022, 49(16): 1602019. (in Chinese).
    [7] 田萱, 王子亚, 王建新. 基于语义分割的食品标签文本检测[J]. 农业机械学报,2020,51(8):336-343. doi: 10.6041/j.issn.1000-1298.2020.08.037

    TIAN X, WANG Z Y, WANG J X. Text detection of food labels based on semantic segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 336-343. (in Chinese). doi: 10.6041/j.issn.1000-1298.2020.08.037
    [8] 郜明. 基于机器视觉的抽纸软包装缺陷检测算法研究[D]. 成都: 四川大学, 2021.

    GAO M. Research on defect detection algorithm of flexible packaging tissue paper on machine vision[D]. Chengdu: Sichuan University, 2021. (in Chinese).
    [9] 赵宝水. 基于机器视觉的药品包装检测关键技术的研究[D]. 锦州: 辽宁工业大学, 2021.

    ZHAO B SH. Research on the key technology of drug packaging detection based on machine vision[D]. Jinzhou: Liaoning University of Technology, 2021. (in Chinese).
    [10] 陈雪纯, 方宇伦, 杜世昌, 等. 基于深度学习的包装缺陷快速检测方法[J]. 机械设计与研究,2021,37(6):165-169,178. doi: 10.13952/j.cnki.jofmdr.2021.0237

    CHEN X CH, FANG Y L, DU SH CH, et al. Rapid packaging defect detection method based on deep learning[J]. Machine Design and Research, 2021, 37(6): 165-169,178. (in Chinese). doi: 10.13952/j.cnki.jofmdr.2021.0237
    [11] 陈其浩, 孙林, 张倩. 基于改进U2-Net的透明件划痕检测方法[J]. 科学技术与工程,2022,22(2):620-627. doi: 10.3969/j.issn.1671-1815.2022.02.025

    CHEN Q H, SUN L, ZHANG Q. Scratch detection method of transparent parts based on improved U2-Net[J]. Science Technology and Engineering, 2022, 22(2): 620-627. (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.02.025
    [12] JIN ZH X, ZHONG F Y, ZHANG Q, et al. Visual detection of tobacco packaging film based on apparent features[J]. International Journal of Advanced Robotic Systems, 2021, 18(3): 1-14.
    [13] XU Y CH, NAGAHARA H, SHIMADA A, et al. TransCut2: transparent object segmentation from a light-field image[J]. IEEE Transactions on Computational Imaging, 2019, 5(3): 465-477. doi: 10.1109/TCI.2019.2893820
    [14] MADESSA A H, DONG J Y, DONG X H, et al. Leveraging an instance segmentation method for detection of transparent materials[C]. 2019 IEEE Conference on SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, IEEE, 2019: 406-412.
    [15] WANG J J, LI R F, MO X T, et al. Web film inspection system[J]. Optik, 2009, 120(13): 630-635. doi: 10.1016/j.ijleo.2008.01.001
    [16] REN ZH H, FANG F ZH, YAN N, et al. State of the art in defect detection based on machine vision[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2): 661-691. doi: 10.1007/s40684-021-00343-6
    [17] LEE D J, SCHOENBERGER R, ARCHIBALD J, et al. Development of a machine vision system for automatic date grading using digital reflective near-infrared imaging[J]. Journal of Food Engineering, 2008, 86(3): 388-398. doi: 10.1016/j.jfoodeng.2007.10.021
    [18] AL-MALLAHI A, KATAOKA T, OKAMOTO H, et al. Detection of potato tubers using an ultraviolet imaging-based machine vision system[J]. Biosystems Engineering, 2010, 105(2): 257-265. doi: 10.1016/j.biosystemseng.2009.11.004
    [19] MERY D, LILLO I, LOEBEL H, et al. Automated fish bone detection using X-ray imaging[J]. Journal of Food Engineering, 2011, 105(3): 485-492. doi: 10.1016/j.jfoodeng.2011.03.007
    [20] LI Y L, WANG SH J, TIAN Q, et al. A survey of recent advances in visual feature detection[J]. Neurocomputing, 2015, 149: 736-751. doi: 10.1016/j.neucom.2014.08.003
    [21] MORENO I, AVENDAÑO-ALEJO M, TZONCHEV R I. Designing light-emitting diode arrays for uniform near-field irradiance[J]. Applied Optics, 2006, 45(10): 2265-2272. doi: 10.1364/AO.45.002265
    [22] LIU Y J, KONG J Y, WANG X D, et al. Research on image acquisition of automatic surface vision inspection systems for steel sheet[C]. 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), IEEE, 2009: 189-192.
    [23] 赵文宏, 彭超, 陈红星. 基于形态学玻璃屏幕表面划痕检测方法研究[J]. 浙江工业大学学报,2016,44(3):279-282. doi: 10.3969/j.issn.1006-4303.2016.03.009

    ZHAO W H, PENG CH, CHEN H X. Study on scratch inspection methods of glass screen surface based on morphology[J]. Journal of Zhejiang University of Technology, 2016, 44(3): 279-282. (in Chinese). doi: 10.3969/j.issn.1006-4303.2016.03.009
    [24] 刘重阳. 基于计算机视觉的透明材料缺陷检测系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.

    LIU CH Y. Research on defect detection system of transparent materials based on computer vision[D]. Harbin: Harbin University of Science and Technology, 2020. (in Chinese).
    [25] 苑玮琦, 毕天宇. 玻璃质量在线视觉检测系统光源的设计[J]. 应用光学,2015,36(3):369-375. doi: 10.5768/JAO201536.0301006

    YUAN W Q, BI T Y. Illuminating source design of online visual inspection system for glass defects[J]. Journal of Applied Optics, 2015, 36(3): 369-375. (in Chinese). doi: 10.5768/JAO201536.0301006
    [26] MEZIANE R, MEGUELLATI S, MESSAGIER M. Precision inspection of transparent component quality[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(3-4): 1731-1741. doi: 10.1007/s00170-022-10774-3
    [27] 张以谟. 应用光学[M]. 4版. 北京: 电子工业出版社, 2015.

    ZHANG Y M. Applied Optics[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2015. (in Chinese)
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  153
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回