Design and fabrication of liquid crystal wavefront corrector based on mask lithography
-
摘要:
液晶波前校正器通常基于液晶显示器的工艺制备而成,因此其研制成本高、定制难度大。本文基于掩模光刻法制备液晶波前校正器,以实现液晶波前校正器的专用化、低成本研制。基于掩模光刻技术设计并制备了91像素的无源液晶驱动电极,并封装成液晶光学校正单元。设计并制备了驱动连接电路板,实现了液晶光学驱动单元和驱动电路板的匹配对接。对液晶波前校正器响应特性进行检测。结果显示,其相位调制量为5.5个波长,响应时间为224 ms。利用Zygo干涉仪进行球面波的产生和静态倾斜像差的校正。结果显示,其可以产生正负离焦波前,且对水平倾斜像差校正后,Zernike多项式中第一项的值从1.18降至0.16,校正幅度达86%,实现了像差的有效校正。本文的研究工作可为液晶波前校正器的研制提供新思路,进而拓宽其应用领域和场景。
Abstract:Liquid crystal wavefront correctors (LCWFCs) exhibit high development cost and customization difficulties due to being fabricated based on the process technology of liquid crystal displays. To achieve specialized and low-cost development of LCWFCs, a liquid crystal wavefront corrector is fabricated by using the mask lithography method. Firstly, a 91-pixel passive liquid crystal driving electrode is designed and prepared based on the mask lithography technology and then, packaged as a liquid crystal optical correction unit. A circuit board for driver connection is designed and prepared to connect the optical correction unit and the driving circuit board. Next, the response characteristics of the LCWFC are tested, and the results show that the phase modulation is 5.5 λ, and the response time is 224 ms. Finally, the spherical waves are obtained and the static tilt aberrations are corrected based on Zygo interferometer. The results show that the LCWFC can generate positive and negative defocused wavefronts. Further, after correction of the horizontal tilt aberration, the coefficient of the first term of the Zernike polynomials is decreased from 1.18 to 0.16. Therefore, the aberration is corrected with the amplitude of 86%. This work may provide new ideas for the development of LCWFCs, and then expanding their application fields and scenarios.
-
图 12 正负离焦像差球面波。(a)、(b)、(c)为施加正离焦的干涉条纹、立体波面及波前;(d)、(e)、(f)为施加负离焦的干涉条纹、立体波面及波前
Figure 12. Positive and negative defocused aberration spherical wave. (a) Interference fringe, (b) stereoscopic wavefront and (c) two-dimensional wavefront under positive defocus; (d) interference fringe, (e) stereoscopic wavefront and (f) two-dimensional wavefront under negative defocus
-
[1] SHAH S, SUBRAMANIAN S, ANUPAMA G C, et al. Towards the development of the Infrared Guide Star Catalogue for the adaptive optics observations by the Thirty Meter Telescope[J]. Proceedings of SPIE, 2022, 12185: 1218506. [2] WALSH S M, KARPATHAKIS S F E, MCCANN A S, et al. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates[J]. Scientific Reports, 2022, 12(1): 18345. doi: 10.1038/s41598-022-22027-0 [3] KWON Y, HONG J H, KANG S, et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin[J]. Nature Communications, 2023, 14(1): 105. doi: 10.1038/s41467-022-35738-9 [4] BURNS S A, ELSNER A E, SAPOZNIK K A, et al. Adaptive optics imaging of the human retina[J]. Progress in Retinal and Eye Research, 2019, 68: 1-30. doi: 10.1016/j.preteyeres.2018.08.002 [5] YANG Y Q, KANG X W, CAO L C. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator[J]. Journal of Physics:Photonics, 2023, 5(3): 035002. doi: 10.1088/2515-7647/acd28c [6] 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与激光工程,2020,49(10):20201042.MA Y X, WU J, SU R T, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49(10): 20201042. (in Chinese) [7] DOU R SH, GILES M K. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder[J]. Optics Letters, 1995, 20(14): 1583-1585. doi: 10.1364/OL.20.001583 [8] 宣丽, 刘永军, 胡立发, 等. 一种纯位相透射式TFT液晶波前校正器的制备方法, 中国: CN1727967[P]. 2006-02-01.XUAN L, LIU Y J, HU L F, et al. A preparation method for pure phase transmission TFT liquid crystal wavefront corrector, CN1727967[P]. 2006-02-01. [9] HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optics Express, 2004, 12(26): 6403-6409. doi: 10.1364/OPEX.12.006403 [10] 张健, 徐林, 吴丽莹, 等. 液晶光学相控阵可编程光束偏转研究[J]. 光子学报,2008,37(8):1497-1502. doi: 10.3390/nano12071169ZHANG J, XU L, WU L Y, et al. Programmable beam steering based on liquid crystal optical phased array[J]. Acta Photonica Sinica, 2008, 37(8): 1497-1502. doi: 10.3390/nano12071169 [11] BURNS D C, UNDERWOOD I, GOURLAY J, et al. A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator[J]. Optics Communications, 1995, 119(5-6): 623-632. doi: 10.1016/0030-4018(95)00414-4 [12] RESLER D P, HOBBS D S, SHARP R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics letters, 1996, 21(9): 689-691. [13] SERATI S A, XIA X W, MUGHAL O, et al. High-resolution phase-only spatial light modulators with submillisecond response[J]. Proceedings of SPIE, 2003, 5106: 138-145. doi: 10.1117/12.488311 [14] 陈颖, 黄润坤, 吴頔, 等. 全球光刻胶产业现状及布局[J]. 中国集成电路,2023,32(5):22-26,65.CHEN Y, HUANG R K, WU D, et al. The current situation and layout of the photoresist industry[J]. China Integrated Circuit, 2023, 32(5): 22-26,65. (in Chinese) [15] CAO ZH L, PENG Z H, XUAN L, et al. Design and fabrication of 2 kHz nematic liquid crystal variable retarder with reflection mode[J]. Liquid Crystals, 2020, 47(6): 870-881. doi: 10.1080/02678292.2019.1686778 [16] 杨雅淇. 双波前校正器校正畸变波前的实验研究[D]. 西安: 西安理工大学, 2022.YANG Y Q. Experimental research on correction of distorted wavefront by dual wavefront corrector[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese) [17] LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517-1524. doi: 10.1364/AO.36.001517 [18] 陈梅蕊, 杜莹, 毛红敏, 等. 无源液晶光学器件的低成本驱动电路设计[J]. 液晶与显示,2022,37(12):1572-1579. doi: 10.37188/CJLCD.2022-0266CEHN M R, DU Y, MAO H M, et al. Design of low-cost drive circuit for passive liquid crystal optical device[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12): 1572-1579. (in Chinese) doi: 10.37188/CJLCD.2022-0266 [19] 李艳丽, 刘显和, 伍强. 先进光刻技术的发展历程与最新进展[J]. 激光与光电子学进展,2022,59(9):0922006.LI Y L, LIU X H, WU Q. Evolution and updates of advanced photolithography technology[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922006. (in Chinese) [20] CHAKER A, ALTY H R, TIAN P, et al. Nanoscale patterning of zinc oxide from zinc acetate using electron beam lithography for the preparation of hard lithographic masks[J]. ACS Applied Nano Materials, 2021, 4(1): 406-413. doi: 10.1021/acsanm.0c02756 [21] 芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735. doi: 10.3788/YJYXS20122706.0730LU Y J, CAO ZH L, QU Y L, et al. Dynamic phase response of liquid crystal wavefront corrector[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(6): 730-735. (in Chinese) doi: 10.3788/YJYXS20122706.0730 [22] PENG Z H, WANG Q D, LIU Y G, et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds[J]. Liquid Crystals, 2016, 43(2): 276-284. doi: 10.1080/02678292.2015.1105311 [23] GU D F, WINKER B K, TABER D B, et al. Dual frequency liquid crystal devices for infrared electro-optical applications[J]. Proceedings of SPIE, 4799, 2002,4799: 37-47. [24] 曹召良, 穆全全, 胡立发, 等. 液晶波前校正器位相调制非线性及闭环校正研究[J]. 液晶与显示,2008,23(2):157-162.CAO Z L, MU Q Q, HU L F, et al. Nonlinear phase modulation of liquid crystal wavefront corrector and closed loop correction[J]. Chinese Journal of Liquid Crystals and Displays, 2008, 23(2): 157-162. (in Chinese) [25] LIU C, MU Q Q, HU L F, et al. High precision Zernike modal gray map reconstruction for liquid crystal corrector[J]. Chinese Physics B, 2010, 19(6): 064214. doi: 10.1088/1674-1056/19/6/064214 [26] 范君柳, 吴泉英, 陈宝华, 等. 基于双泽尼克多项式的多视场稀疏孔径成像[J]. 光学学报, 2023, 43(10): 1011001.FAN J L, WU Q Y, CHEN B H, et al. Multi-field-of-view sparse aperture imaging based on double Zernike polynomials[J]. Acta Optica Sinica, 2023, 43(10): 87-96. (in Chinese) [27] 王英. 相干光通信系统的非共光路像差校准实验研究[D]. 西安: 西安理工大学, 2021.WANG Y. Experimental study on non common path aberration calibration of coherent optical communication system[D]. Xi’an: Xi’an University of Technology, 2021. (in Chinese) [28] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese) doi: 10.37188/CO.2021-0182