Research progress of space laser communication networking technology
-
摘要:
激光通信是以光波为载体实现信息传输的通信技术,具有高速率、高带宽、小尺寸、抗干扰和保密性好等优势,具备实现空间信息网络高速传输和安全运行的关键能力。本世纪以来,国内外主要研究机构致力于研究激光通信技术在实现组网过程中所需要解决的一系列问题,包括一点对多点同时激光通信、节点内多路信号全光交换与转发、节点动态随遇接入、网络动态拓扑结构设计等关键技术,并开展了众多演示验证实验,部分研究成果已经投入应用。本文在对空间激光通信组网技术进行分析探讨的基础上,概述了国内外的激光通信组网技术的发展现状,重点对卫星星座、卫星中继和航空网络等领域中激光通信组网技术的应用情况和发展现状进行了分析和总结,对国内相关研究技术方案、实验验证情况等进行了综述,最后对激光通信组网技术与应用的发展趋势进行了预测。
Abstract:Laser communication utilizes light waves as the transmission medium. It offers many advantages, including high data rates, expansive bandwidth, compactness, robust interference resistance, and superior confidentiality. It has the critical capability to enable high-speed transmission and secure operation of space information networks. Prominent research institutions have committed to studying a series of challenges that need to be solved in the process of networking laser communication technology, including point-to-multipoint simultaneous laser communication, all-optical switching and forwarding of multi-channel signals within nodes, node dynamic random access, and network topology design. Numerous demonstration and verification experiments have been conducted, with a subset of these research results finding practical applications. Based on the analysis and discussion of space laser communication networking technology, this paper summarizes the development of laser communication networking technology both domestically and internationally, focusing on the application of laser communication networking technology in the fields of satellite constellations, satellite relays, and aviation networks; furthermore, it presents a review of pertinent domestic research methodologies, experimental validations, and technical solutions; finally, it predicts the development trend of laser communication networking technology and applications.
-
图 7 (a)“一对二”同时激光通信外场试验系统组成图、(b)“一对二”同时激光通信外场试验节点布置图、(c)“一对二”激光通信试验现场图
Figure 7. (a) One-to-two-point simultaneous laser communication field test system composition diagram, 60 (b) one-to-two-point simultaneous laser communication field test node layout, and (c) one-to-two-point laser communication test site map.
图 9 节点内全光交换技术研究进展(a)WC-OCS和格式转换的三节点FSO网络的实验设置[29]、(b)单泵浦FWM实验设置图[30]、(c)基于WOCS的光交换原理[31]
Figure 9. Research progress on nodal all-optical switching technology (a) Experimental setup of the 3-node FSO network with the simultaneous WC-OCS and format conversion[29], (b) experimental setup diagram of single-pump FWM[30], and (c) optical switching principle based on WOCS[31].
表 1 一点对多点激光通信方案的性能参数对比
Table 1. Comparison of performance parameters of point-to-multipoint laser communication schemes.
参数 HAWK终端 球形转台 硅基光学
相控阵液晶光学相控阵 特殊光机结构
(旋转抛物面)目前水平 规划参数 工作模式 一对一×4 一对一×4 一对多 一对多 一对多 一对四 数据传输速率 7 Gbps 2.5 Gbps 70 Gbps 25 Gbps 100+ Gbps 10 Gbps 通信光束发散角 80 μrad 100 μrad 68 μrad - - 50 μrad 偏转最大角度 方位角:0−360° ±5°(内框) 50°(单孔径) ±25°(单孔径) ±45°(单孔径) 方位角360°,俯仰角15° 平均切换时间 - <30 s 200 ms <10 ms <5 ms <30 s 传输距离 50 km 100 km 54 m 1000 km 系统功耗 110 w 1000 w - 80 Wmax <30 W <150 W 系统体积 279 mm×256 mm×546 mm Φ250 mm - 175 mm×125 mm×50 mm - Φ300 mm*750 mm 系统质量 13 kg 25 kg - 1 kg 45 kg 跟踪精度 - 20-30 μrad - 20 μrad 3 μrad 通光孔径 31 mm 150 mm 3 mm 25 mm 等效收发口径≥85 mm 功耗 2.9 w 5 w 72.53 μW <3 W 转向机构 无 二轴四框架 无 无 无 二维摆镜 表 2 一对多同时激光通信光端机参数对照表
Table 2. Point-to-multipoint simultaneous laser communication optical terminal parameter comparison table
参数 “一对二”原理
验证装置“一对三”原理样机 “一对三”工程样机 “一对四”原理样机 “一对三”测通传
一体化原理样机通信光波长 1550 nm/1064 nm 1550 nm/1530 nm、
1561 nm/1605 nm;1530 nm
1605 nm/1571 nm/1550 nm1550 nm/1530 nm 1550 nm 通信速率 1−2.5 Gbps 2.5 Gbps 2.5 Gbps 1 Gbps−10 Gbps 10 Gbps 通信距离(等效) 50 km 100~1000 km 100~1000 km 1000 km 1000 km 通信光束散角 100 µrad 300 μrad(主)
40 μrad(从)200 μrad(主)
40 μrad(从)80 μrad(主)
80 μrad(从)50 μrad(主、从) 信标光束散角 - 1 mrad(主、从) 2 mrad(主、从) 2 mμad(主、从) 300 μrad(主、从) 通信范围 360°(方位)
38°(俯仰)360°(方位)
30°(俯仰)360°(方位)
30°(俯仰)360°(方位)
30°(俯仰)360°(方位)
30°(俯仰)通信光发射功率 1 W 5 W(主)
2 W(从)5 W(主)
2 W(从)5 W(主)
2 W(从)4 W(主、从) 状态 完成实验室原理验证 完成实验室原理验证 完成野外演示验证 完成实验室原理验证 正在进行实验室原理验证 表 3 卫星星座激光通信组网典型案例
Table 3. Typical cases of laser communication networking in satellite constellations.
系统 HALO AlphaSAT Starlink Transport Layer Space-BACN 搭载平台 LEO-GEO LEO-GEO LEO LEO GEO-LEO 年份 2012 2012 2017 2019 2021 国家 美国 欧洲 美国 美国 美国 通信速率 4200 Gbps 100 Mbps 1 Gbps 200 Gbps 100 Gbps 链路距离 - 36000 km 1204 km 3000−7000 km 10000 km 表 4 卫星中继激光通信组网典型案例
Table 4. Typical cases of satellite relay laser communication networking
系统 EDRS HICALI LCRD LOCNESS JDRS 搭载平台 Sentinel1-Alpha GEO-LEO GEO-Ground GEO-Ground GEO-LEO 年份 2014 2021 2019 2019 2020 国家 欧洲 日本 美国 美国 日本 通信速率 1.8 Gbps 10 Gbps 2.88 Gbps/622 Mbps 10/100 Gbps 1.8 Gbps 工作波长 1064 nm 1541.35 nm 1550 nm - 1540 nm/1560 nm 链路距离 45000 km 45000 km 38000 km 73395 km 45000 km 通信光功率 2.2 W 2.5 W 0.5 W - - 光学口径 135 mm 150 mm 108 mm 220 mm 150 mm 调制/解调方式 BPSK/零差相干探测 DPSK DPSK/16PPM - RZ-DPSK-DD/IM-DD/直接探测 质量 50 kg 50 kg 69 kg - 50 kg左右 功耗 160 W 160 W 130 W - - 表 5 航空平台激光通信组网典型案例
Table 5. Typical cases of laser communication networking on aviation platforms
系统 ORCLE ORCA Falcon FOENEX Loon Aquila Ultra Air 搭载平台 Aircraft Aircraft Aircraft Aircraft H-A-P(stratospheric) Aircraft Aircraft 年份 2008 2008 2011 2012 2015 2016 2021 国家 美国 美国 美国 美国 美国 美国 美国 通信速率 155 Mpbs 2.5 Gbit/s 2.5 Gbit/s 6 Gbps 130 Mpbs 1 Gbps 10 Gbps 链路距离 25 km 18 km 132 km 230 km 100 km 17 km 4500 km 通信光功率 0.5 w 0.2 w 10 w 0.5 w 0.1 w 1 w 42 dbm 光学口径 5.08 cm 2.54 cm 3.05 cm 10.75 cm - - - 调制/解调方式 OOK OOK OOK FM/IM OOK QPSK - -
[1] 姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT& C Technology, 2015, 34(3): 207-217. (in Chinese). [2] HEMMATI H. Deep Space Optical Communications[M]. Hoboken: John Wiley & Sons, 2006. [3] KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96. [4] HEMMATI H, BISWAS A, DJORDJEVIC I B, et al. Deep-space optical communications: future perspectives and applications[J]. Proceedings of the IEEE, 2011, 99(11): 2020-2039. doi: 10.1109/JPROC.2011.2160609 [5] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147 [6] SUN L, DU Q H. Physical layer security with its applications in 5G networks: a review[J]. China Communications, 2017, 14(12): 1-14. doi: 10.1109/CC.2017.8246483 [7] RADHAKRISHNAN R, EDMONSON W W, AFGHAH F, et al. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2442-2473. [8] BILGI M, YUKSEL M. Multi-element free-space-optical spherical structures with intermittent connectivity patterns[C]. IEEE INFOCOM Workshops 2008, IEEE, 2008: 1-4. [9] VELAZCO J, BOYRAZ O. High data rate inter-satellite omnidirectional optical communicator[C]. 32nd Annual AIAA/USU Conference on Small Satellites, AIAA, 2018: 354-2305. [10] 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033 [11] SEARCY P, MATSUMORI B A. Five advantages of managed optical communications array (MOCA) technology over other Lasercomm approaches[J]. Proceedings of SPIE, 2021, 11678: 116780Y. [12] 李全超. 基于万向节的机载高精度光电平台机构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.LI Q CH. Research on mechanism of aerial high-precision optoelectronic platform based on universal joint[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese). [13] YOU Q, CHEN D G, XIAO X, et al. 10 Gb/s free space optical interconnect with broadcasting capability enabled by a silicon integrated optical phased array[J]. Chinese Optics Letters, 2021, 19(12): 120602. doi: 10.3788/COL202119.120602 [14] HAN R L, SUN J F, HOU P P, et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 2022, 30(4): 5026-5037. doi: 10.1364/OE.447351 [15] 李盈祉. 硅基光学相控阵芯片的研制及应用研究[D]. 吉林: 吉林大学, 2023.LI Y ZH. Research and application of silicon-based optical phased array chip[D]. Jilin: Jilin University, 2023. (in Chinese). [16] 梁知清. 液晶光学相控阵波束指向范围的拓展方法研究[D]. 成都: 电子科技大学, 2022.LIANG ZH Q. Research on the expansion method of beam pointing range of liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese). [17] 曹汉, 张士元, 穆全全, 等. 基于光控取向技术的液晶光阀系统[J]. 长春理工大学学报(自然科学版),2021,44(3):10-14.CAO H, ZHANG SH Y, MU Q Q, et al. Liquid crystal light valve system based on photoalignment[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(3): 10-14. (in Chinese). [18] MATSUMORI B A, SEARCY P. An investigation into the technical and system operational impacts of applying FSO point-to-multipoint communications technology[C]. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), IEEE, 2022: 248-254. [19] PRESBY H M, TYSON J A. Point-to-multipoint free-space wireless optical communication system: US, 6445496[P]. 2002-09-03. [20] SPARROLD S W, UPTON E L, OKOROGU A O. Free space point-to-multipoint optical communication system and apparatus: US, 6912360[P]. 2005-06-28. [21] 史蒂芬·G·兰伯特. 自由空间光通信网络及用于中继节点的方法: 美国, 106341184A[P]. 2017-01-18. . [22] M·D·马可夫斯基, G·D·科尔曼, W·J·小斯尔卡科, 等. 用于自由空间光通信的激光继电器: 美国, 105284064A[P]. 2016-01-27. . [23] 姜会林, 胡源, 宋延嵩, 等. 空间激光通信组网光端机技术研究[J]. 航天返回与遥感,2011,32(5):52-59.JIANG H L, HU Y, SONG Y S, et al. Research on space laser communication network[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 52-59. (in Chinese). [24] 江伦, 胡源, 王超, 等. 一点对多点同时空间激光通信光学系统研究[J]. 光学学报,2016,36(5):0506001. doi: 10.3788/AOS201636.0506001JIANG L, HU Y, WANG CH, et al. Optical system in one-point to multi-point simultaneous space laser communications[J]. Acta Optica Sinica, 2016, 36(5): 0506001. (in Chinese). doi: 10.3788/AOS201636.0506001 [25] 姜会林, 胡源, 丁莹, 等. 空间激光通信组网光学原理研究[J]. 光学学报,2012,32(10):1006003. doi: 10.3788/AOS201232.1006003JIANG H L, HU Y, DING Y, et al. Optical principle research of space laser communication network[J]. Acta Optica Sinica, 2012, 32(10): 1006003. (in Chinese). doi: 10.3788/AOS201232.1006003 [26] 郭鸿儒. 基于液晶光学相控阵的多用户捕跟方法研究[D]. 成都: 电子科技大学, 2019.GUO H R. Multi-user acquisition tracking method based on liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese). [27] 姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学跟瞄技术研究[J]. 中国激光,2015,42(4):0405008. doi: 10.3788/CJL201542.0405008JIANG H L, JIANG L, SONG Y S, et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. Chinese Journal of Lasers, 2015, 42(4): 0405008. (in Chinese). doi: 10.3788/CJL201542.0405008 [28] HUANG X N, SUH Y L, DUAN T, et al. Simultaneous wavelength and format conversions based on the polarization-insensitive FWM in free-space optical communication network[J]. IEEE Photonics Journal, 2019, 11(1): 6500210. [29] 郏帅威, 汪伟, 谢小平, 等. 空间激光通信网络中的全光数据合路技术研究[J]. 遥测遥控,2022,43(4):70-79.JIA SH W, WANG W, XIE X P, et al. Research on the all-optical data aggregation technology in the space laser communication network[J]. Journal of Telemetry, Tracking and Command, 2022, 43(4): 70-79. (in Chinese). [30] 陆红强, 汪伟, 黄新宁, 等. 下一代空间激光骨干网络全光处理技术[J]. 遥测遥控,2022,43(6):56-63.LU H Q, WANG W, HUANG X N, et al. All-optical processing techniques for next-generation laser-based space backbone-networks[J]. Journal of Telemetry, Tracking and Command, 2022, 43(6): 56-63. (in Chinese). [31] 孟佳成, 谢宁波, 白兆峰, 等. 面向卫星互联网的星载光交换技术[J]. 天地一体化信息网络,2022,3(2):47-55.MENG J CH, XIE N B, BAI ZH F, et al. Spaceborne optical switching technology for satellite internet[J]. Space-Integrated-Ground Information Networks, 2022, 3(2): 47-55. (in Chinese). [32] 付强, 姜会林, 王晓曼, 等. 空间激光通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125. (in Chinese). [33] 中国科学院. 西安光机所星载光交换技术成功在轨验证[EB/OL]. 中国科学院(2023-10-08). https://www.cas.cn/syky/202310/t20231008_4973365.shtml. . [34] 高铎瑞, 谢壮, 马榕, 等. 卫星激光通信发展现状与趋势分析(特邀)[J]. 光子学报,2021,50(4):0406001.GAO D R, XIE ZH, MA R, et al. Development current status and trend analysis of satellite laser communication (invited)[J]. Acta Photonica Sinica, 2021, 50(4): 0406001. (in Chinese). [35] 杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控,2021,42(3):1-7.YANG CH W, CHEN M, LIU X N, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7. (in Chinese). [36] HEINE F, SÁNCHEZ-TERCERO A, MARTIN-PIMENTEL P, et al. In orbit perfomance of tesat LCTs[J]. Proceedings of SPIE, 2019, 10910: 109100U. [37] HAAN H, SIEMENS C. Airborne optical communication terminal: first successful link from Tenerife to the GEO Alphasat[J]. Proceedings of SPIE, 2019, 11133: 1113306. [38] ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U CubeSat: OCSD program[J]. Proceedings of SPIE, 2019, 11180: 111800J. [39] 郑运强, 刘欢, 孟佳成, 等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程,2022,51(6):20210475. doi: 10.3788/IRLA20210475ZHENG Y Q, LIU H, MENG J CH, et al. Development status, trend and key technologies of air-based laser communication[J]. Infrared and Laser Engineering, 2022, 51(6): 20210475. (in Chinese). doi: 10.3788/IRLA20210475 [40] 李贺武, 吴茜, 徐恪, 等. 天地一体化网络研究进展与趋势[J]. 科技导报,2016,34(14):95-106.LI H W, WU Q, XU K, et al. Progress and tendency of space and earth integrated network[J]. Science & Technology Review, 2016, 34(14): 95-106. (in Chinese). [41] ZECH H, HEINE F, TRÖNDLE D, et al. LCT for EDRS: LEO to GEO optical communications at 1, 8 Gbps between Alphasat and sentinel 1a[J]. Proceedings of SPIE, 2015, 9647: 96470J. [42] OSORO O B, OUGHTON E J. A techno-economic framework for satellite networks applied to low earth orbit constellations: assessing starlink, OneWeb and Kuiper[J]. IEEE Access, 2021, 9: 141611-141625. doi: 10.1109/ACCESS.2021.3119634 [43] RAINBOW J. SpaceX launches OneWeb Gen 2 technology demonstrator[EB/OL]. SpaceNews(2023-05-20). https://spacenews.com/spacex-launches-oneweb-gen-2-technology-demonstrator/. [44] VASKO C A, ARAPOGLOU P D, ACAR G, et al. Optical high-speed data network in space-an update on HydRON's system concept[C]. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), IEEE, 2022: 7-13. [45] HAUSCHILDT H, ELIA C, JONES A, et al. ESAs ScyLight programme: activities and status of the high throughput optical network "HydRON"[J]. Proceedings of SPIE, 2019, 11180: 111800G. [46] FREEMAN R H. Notional satellite architectures of military (GEO-Earth) versus space exploration (GEO-Mars)[EB/OL]. MilsatMagazine(2020-10). http://www.milsatmagazine.com/story.php?number=500837950. . [47] FREEMAN R H. Notional satellite architectures of military (GEO-Earth) versus space exploration (GEO-Mars)[EB/OL]. MilsatMagazine(2020-10). http://www.milsatmagazine.com/story.php?number=500837950. . [48] DARPA. DARPA’s mandrake 2 satellites: communicating at the speed of light[EB/OL]. (2022-08-25). https://breakingdefense.com/2022/08/darpas-mandrake-2-satellites-communicating-at-the-speed-of-light/. [49] United States Government. Space development agency successfully launches tranche 0 satellites[EB/OL]. U. S. Department of Defense(2023-04-02). https://www.defense.gov/News/Releases/Release/Article/3348974/space-development-agency-successfully-launches-tranche-0-satellites/. [50] U. S. Department of Defense. Space development agency makes awards for 126 satellites to build tranche 1 transport layer[EB/OL]. (2022-02-28). https://www.defense.gov/News/Releases/Release/Article/2948229/space-development-agency-makes-awards-for-126-satellites-to-build-tranche-1-tra/. [51] ERWIN S. Space development agency issues draft solicitation for 100 satellites[EB/OL]. SpaceNews(2023-05-12). https://spacenews.com/space-development-agency-issues-draft-solicitation-for-100-satellites/. [52] MARROW M. SDA issues draft solicitation for tranche 2 transport layer satellites[N]. Inside Defense, 2023-02-02. (未能确认本条文献类型修改是否正确, 未找到版次信息, 请核对) . [53] DARPA. Space-based adaptive communications node (Space-BACN)[EB/OL].https://www.darpa.mil/work-with-us/space-based-adaptive-communications-node. . [54] 科技日报. 基于激光通信互联 遥感小卫星星座建成[EB/OL]. (2023-01-16). http://www.xinhuanet.com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/c.html?share_token=0447b499-b3da-43f5-9934-a6841ac29c52. . [55] KARAFOLAS N, BARONI S. Optical satellite networks[J]. Journal of Lightwave Technology, 2000, 18(12): 1792-1806. doi: 10.1109/50.908734 [56] LIAO SH K, YONG H L, LIU CH, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8): 509-513. doi: 10.1038/nphoton.2017.116 [57] HERATH H M V R. Starlink: a solution to the digital connectivity divide in education in the global South[J]. arXiv: 2110.09225, 2021. (不确定文献类型及格式是否正确, 请核对) . [58] CHAUDHRY A U, YANIKOMEROGLU H. Free space optics for next-generation satellite networks[J]. IEEE Consumer Electronics Magazine, 2021, 10(6): 21-31. doi: 10.1109/MCE.2020.3029772 [59] BRODKIN J. SpaceX adds laser links to Starlink satellites to serve earth’s polar areas[EB/OL]. (2021-01-26). https://arstechnica.com/information-technology/2021/01/spacex-adds-laser-links-to-starlink-satellites-to-serve-earths-polar-areas/. [60] WASSELL K. SpaceX ramps up Starlink internet speeds with thousands of space lasers[EB/OL]. (2023-10-02). https://cordcuttersnews.com/spacex-ramps-up-starlink-internet-speeds-with-thousands-of-space-lasers/. [61] NAGENDRA N P, KUNAR K, BETTIOL L, et al. An analysis of the applicability of space debris mitigation guidelines to the commercial small-satellite industry[C]. 66th International Astronautical Congress, 2015: 1-18. . [62] GREGORY M, HEINE F, KÄMPFNER H, et al. TESAT laser communication terminal performance results on 5.6Gbit coherent inter satellite and satellite to ground links[J]. Proceedings of SPIE, 2017, 10565: 105651F. [63] JEWETT R. Mynaric to roll out next-generation optical link terminal[EB/OL]. Via Satellite(2021-08-26). https://www.satellitetoday.com/innovation/2021/08/26/mynaric-to-roll-out-next-generation-optical-link-terminal/. [64] JEWETT R. Mynaric to supply Raytheon with optical terminals for SDA program[EB/OL]. Via Satellite(2023-06-22). https://www.satellitetoday.com/government-military/2023/06/22/mynaric-to-supply-raytheon-with-optical-terminals-for-sda-program/. [65] ERWIN S. Boeing unveils WGS-11 design with new military payload[EB/OL]. SpaceNews(2024-04-13). https://spacenews.com/boeing-unveils-wgs-11-design-with-new-military-payload/. [66] PTASINSKI J N, CONGTANG Y. The automated digital network system (ADNS) interface to transformational satellite communications system (TSAT)[C]. MILCOM 2007 - IEEE Military Communications Conference, IEEE, 2007: 1-5. [67] 董全睿, 陈涛, 高世杰, 等. 星载激光通信技术研究进展[J]. 中国光学,2019,12(6):1260-1270. doi: 10.3788/co.20191206.1260DONG Q R, CHEN T, GAO SH J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese). doi: 10.3788/co.20191206.1260 [68] ISRAEL D J, EDWARDS B L, STAREN J W. Laser communications relay demonstration (LCRD) update and the path towards optical relay operations[C]. 2017 IEEE Aerospace Conference, IEEE, 2017: 1-6. [69] 高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/co.20181106.0901GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese). doi: 10.3788/co.20181106.0901 [70] TINGLEY B. The air force wants laser communication pods to securely link fighter aircraft with satellites[EB/OL]. The Drive - The War Zone(2021-01-26). https://www.thedrive.com/the-war-zone/44037/the-air-force-wants-laser-communication-pods-to-securely-link-fighter-aircraft-with-satellites. [71] NASA. NASA invites public to share launch of laser communications demonstration[EB/OL]. NASA(2023-09-07). https://www.nasa.gov/missions/nasa-invites-public-to-share-launch-of-laser-communications-demonstration/. [72] NASA. Integrated LCRD LEO user modem and amplifier terminal[EB/OL]. NASA(2018-06-15). https://www.nasa.gov/directorates/heo/scan/opticalcommunications/illuma-t. [73] SCHAUER K. Laser terminal bound for space station arrives at NASA Goddard for testing[EB/OL]. NASA Feature(2022-07-18). https://www.nasa.gov/image-feature/goddard/2022/laser-terminal-bound-for-space-station-arrives-at-nasa-goddard-for-testing. [74] NASA. Optical communications and sensor demonstration (OCSD-2)[EB/OL]. NASA(2023-08-22). https://www.nasa.gov/image-article/optical-communications-sensor-demonstration-ocsd-2/. [75] PARK E A, CORNWELL D, ISRAEL D. NASA's next generation ≥100 Gbps optical communications relay[C]. 2019 IEEE Aerospace Conference, IEEE, 2019: 1-9. [76] SpaceNews. Japan launches JDRS-1 optical data relay satellite for military, civilian use[EB/OL]. (2023-09-22). https://spacenews.com/japan-launches-jdrs-1-optical-data-relay-satellite-for-military-civilian-use/. [77] HAUSCHILDT H, LE GALLOU N, MEZZASOMA S, et al. Global quasi-real-time-services back to Europe: EDRS global[J]. Proceedings of SPIE, 2019, 11180: 111800X. [78] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程,2023,52(3):20220393. doi: 10.3788/IRLA20220393LI Y, LIN B J, LIU Y CH, et al. Review on laser intersatellite link: current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. (in Chinese). doi: 10.3788/IRLA20220393 [79] JEWETT R. Inmarsat, addvalue debut inter-satellite data relay system linking LEO and GEO[EB/OL]. Via Satellite(2020-11-23). https://www.satellitetoday.com/mobility/2020/11/23/inmarsat-addvalue-debut-inter-satellite-data-relay-system-linking-leo-and-geo/. [80] KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96. . [81] JUAREZ J C, DWIVEDI A, HAMMONS A R, et al. Free-space optical communications for next-generation military networks[J]. IEEE Communications Magazine, 2006, 44(11): 46-51. doi: 10.1109/MCOM.2006.248164 [82] STOTTS L B, ANDREWS L C, CHERRY P C, et al. Hybrid optical RF airborne communications[J]. Proceedings of the IEEE, 2009, 97(6): 1109-1127. doi: 10.1109/JPROC.2009.2014969 [83] BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5): 755-768. doi: 10.1016/j.future.2011.04.017 [84] Airbus. Airbus and VDL group join forces to produce an airborne laser[EB/OL]. (2023-01-10). https://www.airbus.com/en/newsroom/press-releases/2023-01-airbus-and-vdl-group-join-forces-to-produce-an-airborne-laser. [85] CHAUDHRY A U, LAMONTAGNE G, YANIKOMEROGLU H. Laser intersatellite link range in free-space optical satellite networks: impact on latency[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(4): 4-13. doi: 10.1109/MAES.2023.3241142 [86] 赵尚弘, 魏军, 李勇军, 等. 航空光通信与网络技术[M]. 上海: 上海科学技术出版社, 2020.ZHAO SH H, WEI J, LI Y J, et al. Aviation Optical Communication and Networking Technology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2020. (in Chinese) . [87] 陶源盛, 王兴军, 韩昌灏, 等. 面向空间应用的集成光电子技术[J]. 中国科学: 物理学 力学 天文学, 2021, 51(2): 024201.TAO Y SH, WANG X J, HAN CH H, et al. Integrated photonics for space applications[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(2): 024201. (in Chinese). [88] 陈东, 仲小清, 邓恒, 等. 宽带卫星通信网络技术发展态势与发展建议[J]. 前瞻科技,2022,1(1):86-93.CHWN D, ZHONG X Q, DENG H, et al. Development trend and suggestions of broadband satellite communication network[J]. Science and Technology Foresight, 2022, 1(1): 86-93. (in Chinese).