留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂水文微弱多目标激光探测仿真与实验

宗思光 杨劭鹏 张鑫 彭丹 段子科 陈报

宗思光, 杨劭鹏, 张鑫, 彭丹, 段子科, 陈报. 复杂水文微弱多目标激光探测仿真与实验[J]. 中国光学(中英文), 2024, 17(3): 560-571. doi: 10.37188/CO.2023-0141
引用本文: 宗思光, 杨劭鹏, 张鑫, 彭丹, 段子科, 陈报. 复杂水文微弱多目标激光探测仿真与实验[J]. 中国光学(中英文), 2024, 17(3): 560-571. doi: 10.37188/CO.2023-0141
ZONG Si-guang, YANG Shao-peng, ZHANG Xin, PENG Dan, DUAN Zi-ke, CHEN Bao. Simulation and experiment of weak multi-target laser detection in complex hydrology[J]. Chinese Optics, 2024, 17(3): 560-571. doi: 10.37188/CO.2023-0141
Citation: ZONG Si-guang, YANG Shao-peng, ZHANG Xin, PENG Dan, DUAN Zi-ke, CHEN Bao. Simulation and experiment of weak multi-target laser detection in complex hydrology[J]. Chinese Optics, 2024, 17(3): 560-571. doi: 10.37188/CO.2023-0141

复杂水文微弱多目标激光探测仿真与实验

基金项目: 国防科研基金(No. 2019-JCJQ-JJ-056)
详细信息
    作者简介:

    宗思光(1979—),男,河南开封人,博士,2009年于海军工程大学获得工学博士学位,海军工程大学电子工程学院副教授,主要从事下激光探测、激光通信、激光致声等方面的研究。E-mail:41119749@qq.com

    张 鑫(1998—),男,山东临沂人,硕士,2023年于海军工程大学获得工学硕士学位。海军航空大学助教,主要从事激光探测等方面的研究。E-mail:1714308601@qq.com

  • 中图分类号: TN249

Simulation and experiment of weak multi-target laser detection in complex hydrology

Funds: Supported by The National Defense Foundation of China (No. 2019-JCJQ-JJ-056)
More Information
  • 摘要:

    为了探究在近岸复杂水体中激光探测对微弱目标的探测能力,研究水质、目标特征、目标距离对水下激光探测的影响具有重要理论和应用价值。论文建立了水下微弱目标激光探测模型,采用蒙特卡洛仿真验证了不同浊度微弱多目标激光探测性能,模拟了不同距离下微弱目标的激光后向散射回波信号,对多个不同反射系数的目标后向散射回波特性进行了分析。同时设计并研制了灵巧便携式水下微弱目标激光探测系统,进行了实验室及外场湖泊环境下的多目标探测、测距测试验证。在浊度为12.87 NTU的近岸湖泊水域,该系统可在10 m范围内对3~4个直径为80~400 μm的不同低反射系数的混合小目标进行有效探测,平均测量误差为±0.11 m,与理论仿真结果一致。本文研究结果可为蓝绿激光水下多微弱目标探测链路计算、系统设计及参数优化提供参考,可以支撑近海浑浊水体下水下障碍物激光探测工程实践。

     

  • 图 1  单目标测距

    Figure 1.  Single target ranging

    图 2  多目标测距

    Figure 2.  Multi-target ranging

    图 3  光子模拟运动程序

    Figure 3.  Program of photon simulation motion

    图 4  不同水质、不同距离下单个目标激光后向散射峰值图

    Figure 4.  Laser backscattering peak values of a single target at different distances under different water quality conditions

    图 5  不同浊度下三目标回波信号图

    Figure 5.  Echo signal diagrams of three targets with different turbidity values

    图 6  不同反射率目标回波信号图

    Figure 6.  Echo signal diagrams of target with different reflectance values

    图 7  不同浊度下四目标回波信号图

    Figure 7.  Echo signal diagrams of four targets with different turbidity values

    图 8  激光多目标探测系统组成图

    Figure 8.  Composition of laser detection system for multi-target

    图 9  试验样机

    Figure 9.  Experimental prototype

    图 10  系统信号处理模块组成

    Figure 10.  Composition of system signal processing module

    图 11  测距算法原理图

    Figure 11.  Principle diagram of ranging algorithm

    图 12  探测系统工作流程图

    Figure 12.  Working flow chart of detection system

    图 13  近岸实验场景

    Figure 13.  Nearshore experimental scenarios

    图 14  某湖泊多目标激光探测实验系统

    Figure 14.  An experimental system for multi-target laser detection in a certain lake

    图 15  三目标探测原始回波信号图

    Figure 15.  Original echo signal diagram for three target detection

    图 16  峰值提取信号图

    Figure 16.  Peak extraction signal diagram

    图 17  四目标探测原始回波信号图

    Figure 17.  Original echo signal diagram for four-target detection

    图 18  峰值提取信号图

    Figure 18.  Peak extraction signal diagram

    图 19  不同目标激光后向散射回波时间图

    Figure 19.  Laser backscattering echo time plots with different targets

    图 20  不同目标激光后向散射回波强度图

    Figure 20.  Laser backscatter echo intensity plots with different targets

    表  1  不同目标反射系数[25]

    Table  1.   Reflection coefficients of different targets[25]

    目标类型反射系数
    气泡群0.05
    鱼线0.1
    渔网0.23
    多孔礁石0.36
    下载: 导出CSV

    表  2  不同水质下4种探测目标最远距离统计

    Table  2.   Statistics of the farthest distances of four detection targets under different water quality conditions (m)

    水质 目标类型
    气泡群 鱼线 渔网 多孔礁石
    东海台湾海峡 17.2 25.4 30.5 38.8
    黄海中部 15.8 22.7 25 32
    渤海中部 12.4 19.6 22 26
    下载: 导出CSV

    表  3  不同水质下3种目标探测距离

    Table  3.   Three target detection distances under different water quality conditions

    目标类型 时间/ns 探测距离/m
    渔网 47.8 5.5
    气泡群 87.0 10
    鱼线/多孔礁石 113.1 13
    下载: 导出CSV

    表  4  不同水质下4种目标探测距离

    Table  4.   Four target detection distances under different water quality conditions

    目标类型时间/ns探测距离/m
    渔网17.42
    气泡群34.84
    鱼线69.68
    多孔礁石87.010
    下载: 导出CSV

    表  5  测试目标尺寸

    Table  5.   Size of test target

    目标类型 尺寸
    气泡群 D为70~90 μm
    鱼线 D=210 μm
    渔网 Φ=2.5 cm;D=280 μm;l=3 m
    多孔礁石 L=15 cm;W=13 cm;H=20 cm
    下载: 导出CSV

    表  6  三目标探测距离与实际距离结果对比

    Table  6.   Comparison of detection distance and actual distance for three targets

    目标类型探测距离/m时间/ns实际探测距离/m平均值/m相对误差/m标准差
    渔网5.551.246.548.65.8945.3455.5825.6070.1070.1548
    气泡群1091.987.8584.0510.3669.9099.4759.9160.0840.210
    鱼线13114.8116.55115.612.95513.3513.03913.150.1500.0538
    下载: 导出CSV

    表  7  四目标探测距离与实际距离结果对比

    Table  7.   Comparison of detection distance and actual distance for four targets

    目标类型探测距离/m时间/ns实际探测距离/m平均值/m相对误差/m标准差
    鱼线218.518.318.052.1282.1052.0752.1020.1020.03
    气泡群434.536.237.73.9684.1634.3344.1550.1550.259
    渔网870.169.368.38.057.9707.8557.9580.0420.133
    多孔礁石1091.186.587.1510.4779.94010.01010.1420.1420.413
    下载: 导出CSV
  • [1] JANTZI A, JEMISON W, LAUX A, et al. Enhanced underwater ranging using an optical vortex[J]. Optics Express, 2018, 26(3): 2668-2674.
    [2] WANG Y Q, ZHANG J H, ZHENG Y CH, et al. Brillouin scattering spectrum for liquid detection and applications in oceanography[J]. Opto-Electronic Advances, 2023, 6(1): 220016. doi: 10.29026/oea.2023.220016
    [3] 王翀, 杨嘉皓, 朱炳利, 等. 距离选通成像系统中短脉冲激光驱动技术研究[J]. 中国光学(中英文),2023,16(3):567-577. doi: 10.37188/CO.2022-0142

    WANG CH, YANG J H, ZHU B L, et al. Short pulse laser drive technology in a distance-selective imaging system[J]. Chinese Optics, 2023, 16(3): 567-577. (in Chinese). doi: 10.37188/CO.2022-0142
    [4] 宗思光, 张鑫, 梁善永, 等. 多尺度复杂水质尾流气泡的激光探测仿真与实验[J]. 中国激光,2023,50(5):0504003. doi: 10.3788/CJL220853

    ZONG S G, ZHANG X, LIANG SH Y, et al. Laser detection simulation and experiment of multiscale complex water wake bubble[J]. Chinese Journal of Lasers, 2023, 50(5): 0504003. (in Chinese). doi: 10.3788/CJL220853
    [5] 刘东, 姚清睿, 张思诺, 等. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文),2023,16(2):243-257. doi: 10.37188/CO.2022-0145

    LIU D, YAO Q R, ZHANG S N, et al. Research progress of temperature, humidity and pressure detection technology using Raman Lidar[J]. Chinese Optics, 2023, 16(2): 243-257. (in Chinese). doi: 10.37188/CO.2022-0145
    [6] JIANG Z Q, LIU X M, CAI F H, et al. Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source[J]. Chinese Optics, 2023, 16(2): 466-478. doi: 10.37188/CO.EN.2022-0012
    [7] 彭波, 钟昆, 赵慧, 等. 水下目标激光周向扫描探测模型与仿真分析[J]. 红外与激光工程,2019,48(12):135-141.

    PENG B, ZHONG K, ZHAO H, et al. Laser circumferential scanning detection model and simulation analysis of underwater targets[J]. Infrared and Laser Engineering, 2019, 48(12): 135-141. (in Chinese).
    [8] 郜魏柯, 杜小平, 王阳, 等. 激光散斑目标探测技术综述[J]. 中国光学,2020,13(6):1182-1193. doi: 10.37188/CO.2020-0049

    GAO W K, DU X P, WANG Y, et al. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. (in Chinese). doi: 10.37188/CO.2020-0049
    [9] 胡波, 张云菲, 吴超鹏, 等. 基于图像的水下三点激光测距方法研究[J]. 红外与激光工程,2019,48(10):1005011. doi: 10.3788/IRLA201948.1005011

    HU B, ZHANG Y F, WU CH P, et al. Image-based three-beam underwater laser ranging method[J]. Infrared and Laser Engineering, 2019, 48(10): 1005011. (in Chinese). doi: 10.3788/IRLA201948.1005011
    [10] 刘欣宇, 杨苏辉, 廖英琦, 等. 基于小波变换的激光水下测距[J]. 物理学报,2021,70(18):184205. doi: 10.7498/aps.70.20210569

    LIU X Y, YANG S H, LIAO Y Q, et al. Laser underwater ranging based on wavelet transform[J]. Acta Physica Sinica, 2021, 70(18): 184205. (in Chinese). doi: 10.7498/aps.70.20210569
    [11] 李坤, 杨苏辉, 廖英琦, 等. 强度调制532 nm激光水下测距[J]. 物理学报,2021,70(8):084203. doi: 10.7498/aps.70.20201612

    LI K, YANG S H, LIAO Y Q, et al. Underwater ranging with intensity modulated 532 nm laser source[J]. Acta Physica Sinica, 2021, 70(8): 084203. (in Chinese). doi: 10.7498/aps.70.20201612
    [12] 申玲菲, 范婷威, 胡谷雨, 等. 基于蒙特卡洛仿真的水下四点单目测距研究[J]. 光通信研究,2023(4):60-67.

    SHEN L F, FAN T W, HU G Y, et al. Research on underwater four-point monocular ranging based on Monte Carlo simulation[J]. Study on Optical Communications, 2023(4): 60-67. (in Chinese).
    [13] 张鑫, 宗思光, 余扬, 等. 近岸渔网激光探测特性与实验研究[J]. 激光杂志,2023,44(3):105-110. doi: 10.14016/j.cnki.jgzz.2023.03.105

    ZHANG X, ZONG S G, YU Y, et al. Laser detection characteristics and experimental study of inshore fishing net[J]. Laser Journal, 2023, 44(3): 105-110. (in Chinese). doi: 10.14016/j.cnki.jgzz.2023.03.105
    [14] 孔琪. 相位式激光测距技术研究与实现[D]. 成都: 四川师范大学, 2018.

    KONG Q. Research and implementation of phase laser ranging technology[D]. Chengdu: Sichuan Normal University, 2018. (in Chinese).
    [15] 宗思光, 张鑫, 曹静, 等. 舰船尾流激光探测跟踪方法与试验[J]. 红外与激光工程,2023,52(3):20220507. doi: 10.3788/IRLA20220507

    ZONG S G, ZHANG X, CAO J, et al. Method and experiment of laser detection and tracking of ship wake[J]. Infrared and Laser Engineering, 2023, 52(3): 20220507. (in Chinese). doi: 10.3788/IRLA20220507
    [16] 钟昆, 苏伟, 彭波, 等. 水下脉冲激光探测后向散射噪声自适应滤波算法[J]. 太赫兹科学与电子信息学报,2023,21(2):208-215,224. doi: 10.11805/TKYDA2020461

    ZHONG K, SU W, PENG B, et al. An adaptive filter algorithm of underwater pulse laser detection based on backscattering correlative characters[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(2): 208-215,224. (in Chinese). doi: 10.11805/TKYDA2020461
    [17] 刘心溥, 元志安, 王玲, 等. 副载波调制水下激光雷达测距性能仿真[J]. 红外与激光工程,2020,49(S2):20200193.

    LIU X F, YUAN ZH A, WANG L, et al. Performance simulation of underwater lidar ranging system based on subcarrier modulation technology[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200193. (in Chinese)
    [18] 张鑫, 宗思光, 余扬, 等. 水下微弱目标双通道激光探测方法研究[J]. 激光与红外,2023,53(2):185-193. doi: 10.3969/j.issn.1001-5078.2023.02.004

    ZHANG X, ZONG S G, YU Y, et al. Research on dual-channel laser detection method for underwater weak target[J]. Laser & Infrared, 2023, 53(2): 185-193. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.02.004
    [19] 邢刚, 许冬生, 夏云. 基于CPLD的多目标脉冲激光测距系统的设计与实现[J]. 激光与红外,2010,40(2):152-154. doi: 10.3969/j.issn.1001-5078.2010.02.009

    XING G, XU D SH, XIA Y. Design and realization of multi-target pulsed laser range finder on CPLD[J]. Laser & Infrared, 2010, 40(2): 152-154. (in Chinese). doi: 10.3969/j.issn.1001-5078.2010.02.009
    [20] 魏昊, 姜建芳, 施峰, 等. FPGA的多目标激光测距系统的设计与实现[J]. 火力与指挥控制,2007,32(7):120-122,125. doi: 10.3969/j.issn.1002-0640.2007.07.034

    WEI H, JIANG J F, SHI F, et al. The design and realization of multi-target laser range finder on FPGA[J]. Fire Control and Command Control, 2007, 32(7): 120-122,125. (in Chinese). doi: 10.3969/j.issn.1002-0640.2007.07.034
    [21] 董驰, 赵宇, 张翀, 等. 基于FPGA的相位式激光测距系统[J]. 国外电子测量技术,2021,40(8):36-40. doi: 10.19652/j.cnki.femt.2002701

    DONG CH, ZHAO Y, ZHANG CH, et al. Phase laser ranging system based on FPGA[J]. Foreign Electronic Measurement Technology, 2021, 40(8): 36-40. (in Chinese). doi: 10.19652/j.cnki.femt.2002701
    [22] 纪荣祎, 赵长明, 任学成, 等. 脉冲激光测距高精度计时系统的设计[J]. 工矿自动化,2010,36(8):18-22.

    JI R Y, ZHAO CH M, REN X CH, et al. Design of timing system with high precision of pulse laser ranging[J]. Industry and Mine Automation, 2010, 36(8): 18-22. (in Chinese).
    [23] 谭亚运. 水下脉冲激光近程周向扫描探测技术研究[D]. 南京: 南京理工大学, 2017.

    TAN Y Y. Research on underwater laser proximity circumferential scanning detection technology[D]. Nanjing: Nanjing University of Science & Technology, 2017. (in Chinese).
    [24] 李铜基, 林明森, 何贤强, 等. 中国近海海洋——海洋光学特性与遥感[M]. 北京: 海洋出版社, 2012.

    LI T J, LIN M S, HE X Q, et al. Offshore China - Marine Optical Properties and Remote Sensing[M]. Beijing: China Ocean Press, 2012. (in Chinese) .
    [25] 胡江华, 贾其, 李凌, 等. 伪装技术[M]. 2版. 北京: 兵器工业出版社, 2022.

    HU J H, JIA Q, LI L, et al. Camouflage Technology[M]. 2nd ed. Beijing: Weapon Industry Press, 2022. (in Chinese) .
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  209
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回