-
摘要:
针对彩色数字相机高成像质量以及高色准的需求,本文研究了基于Philips棱镜的3CMOS相机的光学系统设计以及相机光谱优化方法。通过对Philips棱镜进行光路建模,优化了棱镜的结构参数。在保证全内反射以及出射窗口大小的条件下,减小了系统的体积,并由此设计了Philips棱镜3CMOS相机光学系统。其视场角为45°,相对孔径为1/2.8,在110 lp/mm的奈奎斯特采样频率下,系统的MTF全视场全波段均大于0.4。基于色度学基本原理建立了Philips棱镜相机的矢量成像模型,分析了由光线入射角度变化造成的薄膜光谱偏移,提出了宽光束下光谱偏移的修正模型。利用该模型设计并优化了相机中的4组光学薄膜。通过光路仿真实验以及色差分析,基于优化后的相机光学系统的平均色差降低了15.8%,像面颜色不均匀性降低了60%。结果表明:本文设计的光学系统拥有良好的成像质量,优化后的相机光谱实现了良好的颜色性能以及颜色均匀性。
Abstract:According to the demand for high imaging quality and high chromaticity in color digital cameras, we investigated the optical system design and camera spectral optimization methods of 3CMOS cameras based on Philips prisms. By constructing the model of the optical path of the Philips prism, the structural parameters of the prism were optimized. The volume of the system was reduced while ensuring total internal reflection and exit window size. Based on this method, the Philips prism 3CMOS camera optical system was designed, with a field of view angle of 45 ° and a relative aperture of 1/2.8. The system's MTF was greater than 0.4 in the full field of view and full band at Nyquist sampling frequency of 110 lp/mm. Subsequently, based on the fundamental principles of chromaticity, a vector imaging model for Philips prism cameras was established. The problem of thin film spectral shift caused by changes in light incidence angle was analyzed, and a correction model for spectral shift under wide beam conditions was proposed. Four sets of optical thin films in the camera were designed and optimized using this model. Through optical path simulation experiments and color error analysis, based on the optimized camera spectrum, the average color error of the system was reduced by 15.8%, and the color non-uniformity of the image plane was reduced by 60%. The results indicate that the designed optical system has good imaging quality, and the optimized camera spectrum achieves good color performance and uniformity.
-
Key words:
- optical design /
- 3CMOS camera /
- colorimetry /
- camera spectral optimization
-
表 1 光学系统设计指标
Table 1. Parameters of optical system
Parameter Value Field of view: 2ω 45° Focal length 35.5 mm F# <3 Distortion <1% Incident angle <6 degree MTF@110 lp/mm >0.3 表 2 Philips棱镜参数
Table 2. Philips prism parameters
Parameter Value α 25.1 mm β 12.9 mm L1 10.6 mm L2 8.1 mm L 44 mm θB 50.2° θR 50.9° DB 22.17 mm DR 22.15 mm D1 1.62 mm D2−DG 0.53 mm 表 3 4组相机光谱的色差值
Table 3. Color errors of four sets of camera spectra
ΔE0 ΔE1 ΔE2 $\Delta {E'_{01}} $ $\Delta {E'_{02}} $ $\Delta {E'_{12}} $ ε Basic film,
SimplifiedAvg 0.248 0.460 0.777 0.457 0.673 1.105 1.017 Max 1.245 1.526 4.190 1.537 3.051 4.553 Basic film,
Monte CarloAvg 0.238 0.501 0.678 0.372 0.709 1.038 0.967 Max 0.865 1.471 4.557 1.149 3.937 4.992 Optimized film,
SimplifiedAvg 0.387 0.431 0.431 0.222 0.212 0.360 0.601 Max 1.577 1.667 1.579 0.851 0.804 1.299 Optimized film,
Monte CarloAvg 0.417 0.466 0.311 0.239 0.278 0.329 0.595 Max 1.522 1.629 1.401 0.987 1.111 1.152 -
[1] WOOTTON C. A Practical Guide to Video and Audio Compression: from Sprockets and Rasters to Macro Blocks[M]. New York: Routledge, 2005. [2] DE L H, GIJSBERTUS B. Optical system for a color television camera: US, 3202039A[P]. 1965-08-24. [3] HIJAZI A, FRIEDL A, CIERPKA C, et al. High-speed imaging using 3CCD camera and multi-color LED flashes[J]. Measurement Science and Technology, 2017, 28(11): 115401. doi: 10.1088/1361-6501/aa892a [4] ZHONG F Q, SHAO X X, QUAN C. 3D digital image correlation using a single 3CCD colour camera and dichroic filter[J]. Measurement Science and Technology, 2018, 29(4): 045401. doi: 10.1088/1361-6501/aaab02 [5] LEE H, PARK S H, NOH S H, et al. Development of a portable 3CCD camera system for multispectral imaging of biological samples[J]. Sensors, 2014, 14(11): 20262-20273. doi: 10.3390/s141120262 [6] 付秀华, 席佩花, 孟繁有, 等. 多路谷物色选光学成像系统分光器件的研究[J]. 长春理工大学学报(自然科学版),2022,45(1):1-8.FU X H, XI P H, MENG F Y, et al. Research on splitter of multi-path optical imaging system for grain color selection[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(1): 1-8. (in Chinese). [7] JIANG Y, QUAN X Q, XING Y, et al. Design of optical imaging system for full-ocean-depth low-light colors[J]. Optics and Lasers in Engineering, 2022, 154: 107042. doi: 10.1016/j.optlaseng.2022.107042 [8] SLAGLE T M, LYON R F, RUDA M C, et al. Color separation prism with adjustable path lengths: US, 6330113B1[P]. 2011-12-11. [9] LUTHER R. Aus dem Gebiet der Farbreizmetrik[J]. Zeitschrift fur Technische Physik, 1927, 8: 540-558. [10] CHEN S H, LÜ B, WU X T, et al. Filter design and color correction for the X-cube prism 3CCD camera[J]. Applied Optics, 2023, 62(4): 979-988. doi: 10.1364/AO.472758 [11] KWOK H S, CHENG P W, HUANG H C, et al. Trichroic prism assembly for separating and recombining colors in a compact projection display[J]. Applied Optics, 2000, 39(1): 168-172. doi: 10.1364/AO.39.000168 [12] 陈新华, 罗宗平, 杨惠林, 等. 高分辨率可视穿刺针光学系统的设计与研制[J]. 中国光学,2021,14(5):1162-1168.CHEN X H, LUO Z P, YANG H L, et al. Design and development of the optical system for the high resolution visual puncture needle[J]. Chinese Optics, 2021, 14(5): 1162-1168. (in Chinese). [13] FINLAYSON G D, MACKIEWICZ M, HURLBERT A. Color correction using root-polynomial regression[J]. IEEE Transactions on Image Processing, 2015, 24(5): 1460-1470. doi: 10.1109/TIP.2015.2405336 [14] ASTER R C, BORCHERS B, THURBER C H. Parameter Estimation and Inverse Problems[M]. 3rd ed. Amsterdam: Elsevier, 2018. [15] 卢进军, 刘卫国, 潘永强. 光学薄膜技术[M]. 2版. 北京: 电子工业出版社, 2011.LU J J, LIU W G, PAN Y Q. Optical Thin Film Technology[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2011. (in Chinese) [16] 修吉宏, 黄浦, 李军, 等. 大面阵彩色CCD航测相机的辐射定标[J]. 光学 精密工程,2012,20(6):1365-1373. doi: 10.3788/OPE.20122006.1365XIU J H, HUANG P, LI J, et al. Radiometric calibration of large area array color CCD aerial mapping camera[J]. Optics and Precision Engineering, 2012, 20(6): 1365-1373. (in Chinese). doi: 10.3788/OPE.20122006.1365 [17] 王成龙, 王春阳, 谷健, 等. 一种基于定标的非均匀性校正改进算法[J]. 中国光学,2022,15(3):498-507. doi: 10.37188/CO.2021-0231WANG CH L, WANG CH Y, GU J, et al. An improved non-uniformity correction algorithm based on calibration[J]. Chinese Optics, 2022, 15(3): 498-507. (in Chinese). doi: 10.37188/CO.2021-0231 [18] SHARMA G, TRUSSELL H J. Digital color imaging[J]. IEEE Transactions on Image Processing, 1997, 6(7): 901-932. doi: 10.1109/83.597268