留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并联结构轴系回转误差建模及装配优化

董一鸣 江波 李翔宇 谢友金 吕涛 阮萍

董一鸣, 江波, 李翔宇, 谢友金, 吕涛, 阮萍. 并联结构轴系回转误差建模及装配优化[J]. 中国光学(中英文), 2024, 17(3): 586-594. doi: 10.37188/CO.2023-0171
引用本文: 董一鸣, 江波, 李翔宇, 谢友金, 吕涛, 阮萍. 并联结构轴系回转误差建模及装配优化[J]. 中国光学(中英文), 2024, 17(3): 586-594. doi: 10.37188/CO.2023-0171
DONG Yi-ming, JIANG Bo, LI Xiang-yu, XIE You-jin, LV Tao, RUAN Ping. Rotary error modeling and assembly optimization of parallel structure shafting[J]. Chinese Optics, 2024, 17(3): 586-594. doi: 10.37188/CO.2023-0171
Citation: DONG Yi-ming, JIANG Bo, LI Xiang-yu, XIE You-jin, LV Tao, RUAN Ping. Rotary error modeling and assembly optimization of parallel structure shafting[J]. Chinese Optics, 2024, 17(3): 586-594. doi: 10.37188/CO.2023-0171

并联结构轴系回转误差建模及装配优化

基金项目: 国家自然科学基金青年基金项目(No. 12103081)
详细信息
    作者简介:

    江 波(1981—),男,湖北武汉人,博士,正高级工程师,2015年于中国科学院大学获得工学博士学位,主要从事光电测控技术、微小位移及角度驱动技术、同步辐射技术等方面的研究。E-mail:ilysay@opt.ac.cn

  • 中图分类号: TH745

Rotary error modeling and assembly optimization of parallel structure shafting

Funds: Supported by National Natural Science Foundation for Young Scientists of China (No. 12103081)
More Information
  • 摘要:

    为提高光电经纬仪等二维转台的轴系运动精度,本文基于雅可比旋量理论建立了一种可考虑零件结构误差及其耦合放大效应的数学模型。针对“一端固定、一端游动”的轴系结构,提出了局部并联结构的分析方法。通过数值仿真分析,获得了各零件结构误差对轴系运动精度的影响以及最优的轴系装配方案。光学口径为650 mm的光电经纬仪的装调结果表明:装配优化后的轴系运动精度较优化前提高了32.1%。所构造的轴系运动精度模型及优化方法为指导光电经纬仪等二维转台的轴系装调以及公差设计提供了一定的理论根据。

     

  • 图 1  运动误差示意图

    Figure 1.  Schematic diagram of motion error

    图 2  局部并联结构示意图

    Figure 2.  Schematic diagram of local parallel structure

    图 3  轴系结构与回转误差测量

    Figure 3.  Shaft structure and rotary error measurement

    图 4  PSO收敛曲线

    Figure 4.  PSO convergence curve

    图 5  敏感性分析

    Figure 5.  Sensitivity analysis

    图 6  几何量测量

    Figure 6.  Geometric measurement

    图 7  轴颈跳动

    Figure 7.  Journal runout

    图 8  优化三维曲面图

    Figure 8.  Optimized 3D surface

    图 9  装配误差补偿

    Figure 9.  Assembly error compensation

    表  1  俯仰轴系几何误差及编号

    Table  1.   Geometric deviation items and numbers of elevation axle

    零件名坐标系误差项编号
    固定端轴承o1δ(x), δ(y), δ(z), θ(y), θ(z)1, 2, 3, 4, 5
    固定端轴套o2δ(x), δ(y), δ(z), θ(y), θ(z)6, 7, 8, 9, 10
    固定端法兰o3δ(x), δ(y), δ(z), θ(y), θ(z)11, 12, 13, 14, 15
    游动端法兰o4δ(x), δ(y), δ(z), θ(y), θ(z)16, 17, 18, 19, 20
    游动端轴承o5δ(y), θ(z)21, 22
    游动端轴套o6δ(x), δ(y), δ(z), θ(y), θ(z)23, 24, 25, 26, 27
    下载: 导出CSV

    表  2  轴系运动模型参数

    Table  2.   Shafting motion model parameters

    参数名 数值
    E1 [±0.005, ±0.020, ±0.020, 0, ±9.696×10−6, ±9.696×10−6]T
    E2 [±0.005, ±0.005, ±0.005, 0, ±9.696×10−6, ±9.696×10−6]T
    E3 [±0.005, ±0.005, ±0.005, 0, ±9.696×10−6, ±9.696×10−6]T
    E4 [±0.010, ±0.010, ±0.010, 0, ±8.242×10−6, ±8.242×10−6]T
    E5 [0, ±0.010, ±0.010, 0, 0, 0]T
    E6 [±0.005, ±0.020, ±0.020, 0, ±9.696×10−6, ±9.696×10−6]T
    L1 250 mm
    L2 1100 mm
    L3 200 mm
    L4 150 mm
    下载: 导出CSV

    表  3  测量结果

    Table  3.   Measurement results

    转角
    /rad
    跳动量
    /μm
    顺时针 逆时针
    X/″ Y/″ $ \sqrt{X^{2}+Y^{2}} $ X/″ Y/″ $ \sqrt{X^{2}+Y^{2}} $
    0 0 0 0 0 0.5 0.2 0.54
    0.52 4 1.7 1.5 2.27 1.9 0.8 2.06
    1.05 3 2.2 1.7 2.78 3 1.5 3.35
    1.57 5 2.8 1.6 3.22 3.3 1.2 3.51
    2.09 2 2.3 0.3 2.32 2.6 −0.1 2.60
    2.62 3 1.6 0.2 1.61 1.5 0.5 1.58
    3.14 5 0.6 1.9 1.99 0.7 2.1 2.21
    3.67 10 1.3 3.3 3.55 1 3.1 3.26
    4.19 9 2.1 3.3 3.91 1.9 3 3.55
    4.71 7 2.3 2 3.05 2.5 1.7 3.02
    5.24 4 1.1 1 1.49 1 0.3 1.04
    5.76 1 −0.1 −0.3 0.32 0.1 −0.1 0.14
    6.28 1 0.4 −0.1 0.41 0.4 −0.1 0.42
    下载: 导出CSV
  • [1] 胡一博, 孟立新, 白杨杨, 等. 空间激光通信粗跟踪等效复合控制技术[J]. 激光与光电子学进展,2023,60(9):0906004.

    HU Y B, MENG L X, BAI Y Y, et al. Coarse tracking equivalent compound control technology for space laser communication[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0906004. (in Chinese).
    [2] 赵怀学, 刘波, 谢梅林, 等. 基于多视场拼接光电经纬仪的成像系统指向校正方法[J]. 光学学报,2022,42(6):0612002. doi: 10.3788/AOS202242.0612002

    ZHAO H X, LIU B, XIE M L, et al. Pointing calibration method for imaging systems of photoelectric theodolites with multi-field of view stitching[J]. Acta Optica Sinica, 2022, 42(6): 0612002. (in Chinese). doi: 10.3788/AOS202242.0612002
    [3] 朱翠汝, 孙凤萤, 徐文清, 等. 研制二维直驱跟星转台测量夜晚整层大气透过率[J]. 光学学报,2021,41(16):1601002. doi: 10.3788/AOS202141.1601002

    ZHU C R, SUN F Y, XU W Q, et al. Developed two-dimensional direct-drive star-following turntable to measure whole-layer atmospheric transmittance at night[J]. Acta Optica Sinica, 2021, 41(16): 1601002. (in Chinese). doi: 10.3788/AOS202141.1601002
    [4] FU Q, ZHAO F, ZHU R, et al. Research on the intersection angle measurement and positioning accuracy of a photoelectric theodolite[J]. Frontiers in Physics, 2023, 10: 1121050. doi: 10.3389/fphy.2022.1121050
    [5] PAAR R, ROIć M, MARENDIć A, et al. Technological development and application of photo and video theodolites[J]. Applied Sciences, 2021, 11(9): 3893. doi: 10.3390/app11093893
    [6] 于夫男, 徐抒岩. 应用于Φ300 mm平面反射镜的精密二维转台轴系设计[J]. 光学 精密工程,2020,28(5):1075-1082.

    YU F N, XU SH Y. Shafting design for precise two-dimensional turntable applied to Φ300 mm plane mirror[J]. Optics and Precision Engineering, 2020, 28(5): 1075-1082. (in Chinese).
    [7] LV T, RUAN P, JIANG K, et al. Modeling and analysis of fast steering mirror disturbance effects on the line of sight jitter for precision pointing and tracking system[J]. Mechanical Systems and Signal Processing, 2023, 188: 110002. doi: 10.1016/j.ymssp.2022.110002
    [8] WU SH CH, TAN L Y, YU S Y, et al. Analysis and correction of axis error in periscope-type optical communication terminals[J]. Optics & Laser Technology, 2013, 46: 127-133.
    [9] ZHANG F R, RUAN P, HAN J F, et al. Analysis and correction of geometrical error-induced pointing errors of a space laser communication APT system[J]. International Journal of Optomechatronics, 2021, 15(1): 19-31. doi: 10.1080/15599612.2021.1895923
    [10] ZHANG F R, RUAN P, HAN J F. Optical path pointing error and coaxiality analysis of APT system of space laser communication terminal[J]. Optica Applicata, 2021, 51(2): 203-222.
    [11] 李翔宇, 彭勃, 江波, 等. 基于角接触球轴承的小型经纬仪方位轴倾斜误差修正[J]. 红外与激光工程,2021,50(12):20210172. doi: 10.3788/IRLA20210172

    LI X Y, PENG B, JIANG B, et al. Tilt error correction of minitype theodolite's vertical shaft based on angular contact ball bearings[J]. Infrared and Laser Engineering, 2021, 50(12): 20210172. (in Chinese). doi: 10.3788/IRLA20210172
    [12] 江波, 周泗忠, 姜凯, 等. 车载经纬仪的垂轴误差分析[J]. 红外与激光工程,2015,44(5):1623-1627.

    JIANG B, ZHOU S ZH, JIANG K, et al. Analysis of vertical axis error of vehicular theodolite[J]. Infrared and Laser Engineering, 2015, 44(5): 1623-1627. (in Chinese).
    [13] 江波, 梅超, 梁元庆, 等. 基于平面方程旋转变化方法的车载经纬仪测角误差修正[J]. 光学学报,2015,35(S1):s112002. doi: 10.3788/AOS201535.s112002

    JIANG B, MEI CH, LIANG Y Q, et al. Angle measurement error correction of vehicle-borne theodolite based on the rotation of plane equation[J]. Acta Optica Sinica, 2015, 35(S1): s112002. (in Chinese). doi: 10.3788/AOS201535.s112002
    [14] 姜玉鑫, 孙建锋, 侯培培, 等. 基于Levenberg-Marquardt算法的旋转双棱镜指向偏差修正[J]. 中国激光,2023,50(6):0605001. doi: 10.3788/CJL220634

    JIANG Y X, SUN J F, HOU P P, et al. Correction of pointing deviation of Risley prisms based on Levenberg-Marquardt algorithm[J]. Chinese Journal of Lasers, 2023, 50(6): 0605001. (in Chinese). doi: 10.3788/CJL220634
    [15] LAFOND P, LAPERRIERE L. Jacobian-based modeling of dispersions affecting pre-defined functional requirements of mechanical assemblies[C]. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning, IEEE, 1999: 20-25.
    [16] 杨朝晖, 高天石, 李崇赫, 等. 基于新一代几何技术规范的装配误差建模[J/OL]. 计算机集成制造系统, 2022: 1-14. (2023-04-17) http://kns.cnki.net/kcms/detail/11.5946.TP.20221209.1431.001.html.

    YANG ZH H, GAO T SH, LI CH H, et al. Assembly error modeling based on geometrical product specifications (GPS)[J/OL]. Computer Integrated Manufacturing Systems, 2022: 1-14. (2023-04-17) http://kns.cnki.net/kcms/detail/11.5946.TP.20221209.1431.001.html. (in Chinese).
    [17] XI Y, GAO ZH Y, CHEN K, et al. Error propagation model using Jacobian-Torsor model weighting for assembly quality analysis on complex product[J]. Mathematics, 2022, 10(19): 3534. doi: 10.3390/math10193534
    [18] CHEN H, JIN S, LI ZH M, et al. A solution of partial parallel connections for the unified Jacobian-Torsor model[J]. Mechanism and Machine Theory, 2015, 91: 39-49. doi: 10.1016/j.mechmachtheory.2015.03.012
    [19] 戴宏玮, 陈琨, 于慧, 等. 雅可比旋量的装配体并联结构公差分析方法研究[J]. 西安交通大学学报,2022,56(5):156-165,222.

    DAI H W, CHEN K, YU H, et al. Tolerance analysis of partial parallel assemblies based on Jacobian-Torsor model[J]. Journal of Xi’an Jiaotong University, 2022, 56(5): 156-165,222. (in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  105
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-10-26
  • 录用日期:  2023-11-24
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回