留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流道结构对半导体泵浦流动铷蒸气激光器特性影响

潘丽 何洋 马利国 季艳慧 刘金岱 陈飞

潘丽, 何洋, 马利国, 季艳慧, 刘金岱, 陈飞. 流道结构对半导体泵浦流动铷蒸气激光器特性影响[J]. 中国光学(中英文), 2024, 17(3): 617-629. doi: 10.37188/CO.2023-0174
引用本文: 潘丽, 何洋, 马利国, 季艳慧, 刘金岱, 陈飞. 流道结构对半导体泵浦流动铷蒸气激光器特性影响[J]. 中国光学(中英文), 2024, 17(3): 617-629. doi: 10.37188/CO.2023-0174
PAN Li, HE Yang, MA Li-guo, JI Yan-hui, LIU Jin-dai, CHEN Fei. Influence of flow channel structure on characteristics of laser diode pumped flowing-gas rubidium vapor laser[J]. Chinese Optics, 2024, 17(3): 617-629. doi: 10.37188/CO.2023-0174
Citation: PAN Li, HE Yang, MA Li-guo, JI Yan-hui, LIU Jin-dai, CHEN Fei. Influence of flow channel structure on characteristics of laser diode pumped flowing-gas rubidium vapor laser[J]. Chinese Optics, 2024, 17(3): 617-629. doi: 10.37188/CO.2023-0174

流道结构对半导体泵浦流动铷蒸气激光器特性影响

基金项目: 国家自然科学基金项目(No. 62005274,No. 61975203);激光与物质相互作用国家重点实验室自主基础研究课题(No. SKLLIM2012);中国科学院青年创新促进会会员(No. 2022216)
详细信息
    作者简介:

    陈 飞(1982—),男,河南南阳人,研究员,博士生导师,2011年于哈尔滨工业大学获得博士学位,现工作于中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室。主要从事高功率气体激光器及其应用方面的研究。E-mail: feichenny@126.com

  • 中图分类号: TP248

Influence of flow channel structure on characteristics of laser diode pumped flowing-gas rubidium vapor laser

Funds: National Natural Science Foundation of China (No. 62005274, No. 61975203); Fund Project of the State Key Laboratory of Laser and Material Interaction (No. SKLLIM2012); Youth Innovation Promotion Association of CAS (No. 2022216)
More Information
  • 摘要:

    为研究气体流道结构对半导体泵浦流动碱金属蒸气激光器(FDPAL)输出性能的影响,本文结合FDPAL中气体传热、流体力学和激光动力学过程建立了FDPAL理论模型,以侧面泵浦Rb蒸气FDPAL(Rb-FDPAL)为仿真对象,分析气体流动方向、流道横截面积和流道形状等对Rb-FDPAL输出性能的影响。结果表明,采用横流方式,通过提高流道横截面积并将气体流道与蒸气池连接部位设置为砌体结构时,蒸气内涡流得到有效抑制,气体流速增加,蒸气池内热效应更小,Rb-FDPAL的激光输出功率和斜率效率更高,仿真结果与实验相符。

     

  • 图 1  Rb-FDPAL激光动力学过程

    Figure 1.  Laser dynamic process of Rb-FDPAL

    图 2  半导体侧面泵浦Rb-FDPAL示意图

    Figure 2.  Schematic diagram of LD side-pumped Rb-FDPAL

    图 3  Rb-FDPAL工作气体的4种流动方向

    Figure 3.  Four flow directions of circulating gases in Rb-FDPAL

    图 4  不同气体流速时,4种流动方向下激光输出功率随泵浦功率的变化情况

    Figure 4.  The change of laser output power with pump power under four flow directions at different gas flow rates

    图 5  当泵浦功率为10000 W、进气口初始速度为10 m/s时,4种气体流动方向下的三维温度和流动分布

    Figure 5.  Three-dimensional temperature distribution and flow distribution under four gas flow directions when pump power is 10000 W and the initial air inlet velocity is 10 m/s

    图 6  当泵浦功率为10000 W、进气口初始速度为10 m/s时,4种气体流动方向下的三维流场分布

    Figure 6.  Three-dimensional flow field distribution under four gas flow directions when the pump power is 10000 W and the initial air inlet velocity is 10 m/s

    图 7  LD侧面泵浦Rb-FDPAL的3种流道横截面积

    Figure 7.  Three diagrams of channel cross-sectional areas of LD side-pumped Rb-FDPAL

    图 8  不同气体流速时,4种流道横截面积下,激光输出功率与泵浦功率之间的关系

    Figure 8.  The relationship between laser output power and pump power at different gas flow rates and four kinds of channel cross-sectional areas

    图 10  当泵浦功率为10000 W、进气口初始速度为10 m/s时,3种流道结构下的三维流场分布

    Figure 10.  Three-dimensional flow field distribution for three flow channel structures when the pump power is 10000 W and the initial air inlet velocity is 10 m/s

    图 9  当泵浦功率为10000 W、进气口初始速度为10 m/s时,v、vi、vii流道结构的三维温度分布

    Figure 9.  Three-dimensional temperature distribution for three flow channel structures when the pump power is 10000 W and the initial air inlet velocity is 10 m/s

    图 11  流道横截面积为81 cm2的vii结构优化前后对比图。(a)优化前;(b)优化后

    Figure 11.  Comparison of the vii structure with the cross-sectional area of 81 cm2 (a) before and (b) after optimization

    图 12  不同气体流速时,vii、viii结构下,激光输出功率与泵浦功率之间的关系

    Figure 12.  The relationship between laser output power and pump power at different gas flow rates under vii and viii structures

    图 13  (a) vii和(b) viii结构下的三维温度分布

    Figure 13.  Three-dimensional temperature distributions under structures (a) vii and (b) viii

    图 14  (a) vii和(b) viii结构下的三维流场分布

    Figure 14.  Three-dimensional flow field distributions under structures (a) vii and (b) viii

    图 15  池内平均粒子数浓度随流速变化情况

    Figure 15.  The average particle number concentration in the cell as a function of flow velocity

    图 16  流道结构为vii,增益区长度为5 cm时激光光斑图。(a)二维图;(b)三维图

    Figure 16.  The laser spot pattern for the channel structure vii with the gain zone length of 5 cm. (a) 2D; (b) 3D

    表  1  缓冲气体的恒压热容、粘滞系数和导热系数[22]

    Table  1.   Partial thermophysical properties of buffer gases

    缓冲气体 恒压热容
    (J·kg−1·K−1)
    粘滞系数
    (Pa·s)
    导热系数
    (W·m−1·K−1)
    5193.2 3×10−8×T+1×10−5 0.0003×T+0.0897
    乙烷 3.9×T+600.3 3×10−8×T+2×10−5 0.0002×T−0.035
    下载: 导出CSV

    表  2  循环流动Rb-FDPAL仿真参数

    Table  2.   Parameters of gas flowing diode pumped rubidium laser

    参数 参数
    泵浦光中心波长(nm) 780 蒸气池增益长度(cm) 5
    泵浦光光斑大小(cm×cm) 5×0.2 反射镜M3反射率 99%
    泵浦光线宽(GHz) 30 耦合输出镜M4反射率 50%
    缓冲气体压强(atm) 1 流动气体初始温度(K) 393.15
    下载: 导出CSV

    表  3  不同流道结构的实验结果对比

    Table  3.   Comparison of the experimental results for different flow channel structures

    参数 文献[13] 文献[14]
    气体流道结构 vi结构 v结构
    泵浦功率(W) 3100 65
    泵浦线宽(GHz) 24.8 20
    蒸气池温度(K) - 388
    气体流速(${\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}$) >8 1~4
    激光输出功率(W) 1500 24
    本模型仿真的激光输出功率 1587 27
    光-光转换效率 48% 36%
    本模型仿真的光-光转换效率 51% 41%
    下载: 导出CSV
  • [1] KRUPKE W F, BEACH R J, KANZ V K, et al. New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper)[J]. Proceedings of SPIE, 2004, 5448: 7-17. doi: 10.1117/12.547954
    [2] KRUPKE W F. Diode pumped alkali lasers (DPALs)—A review (rev1)[J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi: 10.1016/j.pquantelec.2011.09.001
    [3] 季艳慧, 何洋, 万浩华, 等. 高功率循环流动型半导体泵浦碱金属蒸汽激光器研究进展(特邀)[J]. 红外与激光工程,2020,49(12):20201080. doi: 10.3788/IRLA20201080

    JI Y H, HE Y, WAN H H, et al. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080. (in Chinese). doi: 10.3788/IRLA20201080
    [4] 陈毅, 孙俊杰, 于晶华, 等. 大能量碟片激光多通放大器腔体设计研究综述[J]. 中国光学(中英文),2023,16(5):996-1009. doi: 10.37188/CO.2023-0009

    CHEN Y, SUN J J, YU J H, et al. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. (in Chinese). doi: 10.37188/CO.2023-0009
    [5] 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese). doi: 10.37188/CO.2021-0216
    [6] 徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese). doi: 10.37188/CO.2020-0180
    [7] ZHDANOV B V, EHRENREICH T, KNIZE R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
    [8] BOGACHEV A V, GARANIN S G, DUDOV A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [9] GAO F, CHEN F, XIE J J, et al. Review on diode-pumped alkali vapor laser[J]. Optik, 2013, 124(20): 4353-4358. doi: 10.1016/j.ijleo.2013.01.061
    [10] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser[J]. Optics Communications, 2015, 341: 97-100. doi: 10.1016/j.optcom.2014.12.021
    [11] WAICHMAN K, BARMASHENKO B D, ROSENWAKS S. Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL[J]. Journal of the Optical Society of America B, 2017, 34(2): 279-286. doi: 10.1364/JOSAB.34.000279
    [12] YACOBY E, WAICHMAN K, SADOT O, et al. Modeling of flowing-gas diode-pumped potassium laser with different pumping geometries: scaling up and controlling beam quality[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1000107.
    [13] PIZA G A, STALNAKER D M, GUILD E M, et al. Advancements in flowing diode pumped alkali lasers[J]. Proceedings of SPIE, 2016, 9729: 972902.
    [14] YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies[J]. Optics Express, 2018, 26(14): 17814-17819. doi: 10.1364/OE.26.017814
    [15] BARMASHENKO B D, ROSENWAKS S, WAICHMAN K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling[J]. Proceedings of SPIE, 2014, 8962: 89620C.
    [16] SHEN B L, HUANG J H, XU X Q, et al. Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results[J]. IEEE Journal of Quantum Electronics, 2017, 53(3): 1500207.
    [17] GAVRIELIDES A, SCHLIE L A, LOPER R D, et al. Unstable resonators for high power diode pumped alkali lasers[J]. Proceedings of SPIE, 2017, 10090: 100901M.
    [18] HUANG J H, SU CH Y, XU X Q, et al. Theoretical simulations on pulsed exciplex pumped Rb vapor laser[J]. Optics & Laser Technology, 2021, 141: 107165.
    [19] YANG J, AN G F, GUO J W, et al. Study on a gas flowing diode pumped cesium laser[J]. Proceedings of SPIE, 2021, 11890: 118900N.
    [20] 徐艳, 陈飞, 谢冀江, 等. 缓冲气体对碱金属蒸汽激光器工作特性的影响[J]. 红外与激光工程,2015,44(2):455-460. doi: 10.3969/j.issn.1007-2276.2015.02.010

    XU Y, CHEN F, XIE J J, et al. Influence of buffer gas on performance of alkali vapor laser[J]. Infrared and Laser Engineering, 2015, 44(2): 455-460. (in Chinese). doi: 10.3969/j.issn.1007-2276.2015.02.010
    [21] ROTONDARO M D, PERRAM G P. Role of rotational-energy defect in collisional transfer between the 5 2P1/2, 3/2 levels in rubidium[J]. Physical Review A, 1998, 57(5): 4045-4048. doi: 10.1103/PhysRevA.57.4045
    [22] LEMMON E W. Thermophysical properties of fluid systems[J]. NIST Chemistry WebBook, 2010.
    [23] SHU H, BASS M. Three-dimensional computer model for simulating realistic solid-state lasers[J]. Applied Optics, 2007, 46(23): 5687-5697. doi: 10.1364/AO.46.005687
    [24] WAICHMAN K, BARMASHENKO B D, ROSENWAKS S. CFD DPAL modeling for various schemes of flow configurations[J]. Proceedings of SPIE, 2014, 9251: 92510U. doi: 10.1117/12.2067019
    [25] YAMAMOTO T, YAMAMOTO F, ENDO M, et al. Experimental investigation of gas flow type DPAL[J]. Proceedings of SPIE, 2017, 10254: 102540S.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  146
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2023-10-30
  • 录用日期:  2023-12-05
  • 网络出版日期:  2023-12-14

目录

    /

    返回文章
    返回