-
摘要:
本文基于对称的类H型结构设计了一种超材料太赫兹带阻滤波器,这种H型结构的连续金属臂可以流通电流。利用电磁仿真软件CST Microwave Studio 2021研究了该滤波器的滤波特性。通过改变H型双臂间距臂长、周期长度、双H间距离等,确定了滤波器的几何参数。结果表明,该结构可实现偏振选择的功能,在
y 偏振条件下,滤波器在0.2~2.3 THz范围内没有明显的谐振峰,但透过率范围在−15到−3 dB之间。而在x 偏振条件下,在中心频率1.34 THz处可获得FWHM带宽为0.15 THz的一个阻带,传输参数约为−30 dB。最后,采用微加工工艺制备了超材料滤波器样品以验证仿真结果,使用透射式太赫兹时域光谱系统对样品进行测试,测试结果与仿真结果吻合较好。Abstract:In this paper, a terahertz band-stop filter based on a symmetrical H-type structure was designed, the continuous metal arms of which can flow current. By using electromagnetic simulation software CST Microwave Studio 2021, the filtering characteristics of the filter were studied, and the geometric parameters of the filter were determined by changing the arm length, period length and gap of double H. The results show that the filter can realize the tunable polarization properties. Under the
y -polarization condition, the transmission spectrum has no obvious resonance peak in the range of 0.2−2.3 THz, but the intensity ranges from −15 dB to −3 dB. Under thex -polarization condition, a remarkably sharp dipole resonance valley occurs at 1.34 THz in the transmission spectrum, and the bandwidth and intensity are 0.15 THz and −30 dB, respectively. In order to verify the simulation results, the designed metamaterial filter was fabricated using micromachining technology, and the sample was tested by transmissed-terahertz time-domain spectroscopy (THz-TDS) system. The experiment results are in good agreement with the simulation results, which verifies the feasibility of this method.-
Key words:
- terahertz /
- metamaterial /
- H-type structure /
- band-stop filter
-
图 3 (a) 模拟不同内侧臂长度b下的传输特性;(b) 实线:模拟不同双臂间距l和周期长度p下的传输特性;虚线:模拟不同双H间距距离s和周期长度p下的传输特性
Figure 3. (a) Simulated transmission characteristics at different d; (b) soild line: simulated transmission characteristics under different arms spacing l and length p; dotted line: simulated transmission characteristics under different double H spacing distance s and length p
-
[1] 潘学聪, 姚泽瀚, 徐新龙, 等. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学,2013,6(3):283-296.PAN X C, YAO Z H, XU X L, et al. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. (in Chinese). [2] 姚建铨, 路洋, 张百钢, 等. THz辐射的研究和应用新进展[J]. 光电子·激光,2005,16(4):503-510.YAO J Q, LU Y, ZHANG B G, et al. New research progress of THz radiation[J]. Journal of Optoelectronics·Laser, 2005, 16(4): 503-510. (in Chinese). [3] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3 [4] LU X Y, VENKATESH S, SAEIDI H. A review on applications of integrated terahertz systems[J]. China Communications, 2021, 18(5): 175-201. doi: 10.23919/JCC.2021.05.011 [5] WILLIAMS G P. Filling the THz gap—high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326. doi: 10.1088/0034-4885/69/2/R01 [6] 闫海涛, 邓朝, 郭澜涛, 等. 太赫兹远距离快速扫描成像系统的设计[J]. 应用光学,2016,37(2):183-186. doi: 10.5768/JAO201637.0201006YAN H T, DENG CH, GUO L T, et al. Design of terahertz rapid standoff imaging system[J]. Journal of Applied Optics, 2016, 37(2): 183-186. (in Chinese). doi: 10.5768/JAO201637.0201006 [7] GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438. doi: 10.1080/05704928.2019.1670202 [8] 胡其枫, 蔡健. 基于深度学习的太赫兹时域光谱识别研究[J]. 光谱学与光谱分析,2021,41(1):94-99.HU Q F, CAI J. Research of terahertz time-domain spectral identification based on deep learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 94-99. (in Chinese). [9] FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075 [10] 张若雅, 朱巧芬, 张岩. 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报,2023,40(3):301-318. doi: 10.3969/j.issn.1007-5461.2023.03.002ZHANG R Y, ZHU Q F, ZHANG Y. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. (in Chinese). doi: 10.3969/j.issn.1007-5461.2023.03.002 [11] CHEN ZH, CAI P G, WEN Q Y, et al. Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance[J]. Electronics, 2023(12): 2655. [12] 凌芳, 孟庆龙, 黄人帅, 等. 温控太赫兹调制器多频带调制特性[J]. 光谱学与光谱分析,2017,37(5):1334-1338.LING F, MENG Q L, HUANG R SH, et al. The characteristics of thermally tunable multi-bands terahertz modulator[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1334-1338. (in Chinese). [13] KYOUNG J, JANG E Y, LIMA M D, et al. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10): 4227-4231. doi: 10.1021/nl202214y [14] 董卓, 陈捷, 朱一帆, 等. 黑砷磷室温太赫兹探测器(英文)[J]. 中国光学,2021,14(1):182-195. doi: 10.37188/CO.2020-0175DONG ZH, CHEN J, ZHU Y F, et al. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. (in Chinese). doi: 10.37188/CO.2020-0175 [15] 肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报,2023,45(2):718-724.XIAO SH H, LIU J, HU B, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics & Information Technology, 2023, 45(2): 718-724. (in Chinese). [16] VALUŠIS G, LISAUSKAS A, YUAN H, et al. Roadmap of terahertz imaging 2021[J]. Sensors, 2021, 21(12): 4092. doi: 10.3390/s21124092 [17] YEH T T, GENOVESI S, MONORCHIO A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials[J]. Optics Express, 2012, 20(7): 7580-7589. doi: 10.1364/OE.20.007580 [18] ZHU M, LEE C. A design of terahertz broadband filters and its effect in eliminating asymmetric characteristics in device structures[J]. Journal of Lightwave Technology, 2015, 33(15): 3280-3285. doi: 10.1109/JLT.2015.2432017 [19] 王俊林, 张斌珍, 段俊萍, 等. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报,2017,37(10):1016001. doi: 10.3788/AOS201737.1016001WANG J L, ZHANG B ZH, DUAN J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001. (in Chinese). doi: 10.3788/AOS201737.1016001 [20] KUMAR D, JAIN R, SHAHJAHAN, et al. Bandwidth enhancement of planar terahertz metasurfaces via overlapping of dipolar modes[J]. Plasmonics, 2020, 15(6): 1925-1934. doi: 10.1007/s11468-020-01222-7 [21] 高万, 王建扬, 吴倩楠. 基于双金属环的超材料太赫兹宽频带通滤波器的设计与研究[J]. 激光与光电子学进展,2021,58(5):0516001.GAO W, WANG J Y, WU Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic ring[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0516001. (in Chinese). [22] HUANG Y, OKATANI T, KANAMORI Y. Broadband stop filters for THz waves using H-shaped metamaterials with dual electronic-plasmonic functionality[J]. Japanese Journal of Applied Physics, 2022, 61(SD): SD1007. doi: 10.35848/1347-4065/ac55dd [23] TANG SH, HAN J N. Acoustic transmission characteristics based on H-type metamaterials[J]. IEEE Access, 2019, 7: 96125-96131. doi: 10.1109/ACCESS.2019.2929194 [24] WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots–embedded metamaterial[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(5): 557-567. doi: 10.1007/s10762-020-00680-8 [25] TANG CH, YANG J, WANG Y D, et al. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids[J]. Sensors and Actuators B:Chemical, 2021, 329: 129113. doi: 10.1016/j.snb.2020.129113 [26] YANG J, TANG CH, WANG Y D, et al. The terahertz dynamics interfaces to ion–lipid interaction confined in phospholipid reverse micelles[J]. Chemical Communications, 2019, 55(100): 15141-15144. doi: 10.1039/C9CC07598D