留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征图金字塔的冠脉造影图像血管分割方法

郭昊虎 高若谦 葛明锋 董文飞 刘炎 赵旭峰

郭昊虎, 高若谦, 葛明锋, 董文飞, 刘炎, 赵旭峰. 基于特征图金字塔的冠脉造影图像血管分割方法[J]. 中国光学(中英文), 2024, 17(4): 971-981. doi: 10.37188/CO.2023-0186
引用本文: 郭昊虎, 高若谦, 葛明锋, 董文飞, 刘炎, 赵旭峰. 基于特征图金字塔的冠脉造影图像血管分割方法[J]. 中国光学(中英文), 2024, 17(4): 971-981. doi: 10.37188/CO.2023-0186
GUO Hao-hu, GAO Ruo-qian, GE Ming-feng, DONG Wen-fei, LIU Yan, ZHAO Xu-feng. Coronary artery angiography image vessel segmentation method based on feature pyramid network[J]. Chinese Optics, 2024, 17(4): 971-981. doi: 10.37188/CO.2023-0186
Citation: GUO Hao-hu, GAO Ruo-qian, GE Ming-feng, DONG Wen-fei, LIU Yan, ZHAO Xu-feng. Coronary artery angiography image vessel segmentation method based on feature pyramid network[J]. Chinese Optics, 2024, 17(4): 971-981. doi: 10.37188/CO.2023-0186

基于特征图金字塔的冠脉造影图像血管分割方法

cstr: 32171.14.CO.2023-0186
基金项目: 国家重点研发计划(No. 2021YFC2500500);吉林省与中国科学院科技合作高新技术产业化专项资金项目(No. 2023SYHZ0037)
详细信息
    作者简介:

    高若谦(1993—),男,吉林长春人,2020年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事高光谱、成像光学等方面研究。E-mail:gaorq@sibet.ac.cn

  • 中图分类号: TP391.41;

Coronary artery angiography image vessel segmentation method based on feature pyramid network

Funds: Supported by the National Key R&D Program of China (No. 2021YFC2500500); Science and Technology Cooperation Special Project, Jilin Province and Chinese Academy of Sciences (No. 2023SYHZ0037)
More Information
  • 摘要:

    针对冠脉造影图像照明不均、血管结构与背景区域对比度低、冠脉血管拓扑结构复杂等分割难点,建立了一个冠脉造影血管分割标注数据集,并在此基础上提出了一种基于特征图金字塔的冠脉造影图像血管分割模型。本文模型以U-Net网络为基础进行改进和优化,首先,将U-Net编码部分的第一个卷积层修改为一个7×7的卷积层,并提高每一层的感受野,在编解码层中引入修改后的ConvNeXt block,使得网络提取更深层次特征的能力有所提升;其次,设计分组注意力机制模块GA,并将其引入到U-Net跨连接处,对编码部分提取的特征进行增强,弥补编解码器间存在的语义差距;最后,在U-Net解码器处设计了一个特征图金字塔级联模块PFC,融合各尺度的特征图,并在PFC中每一层中加入SE注意力机制模块,用于筛选特征图中的有效信息,网络损失函数为PFC模块各层输出的加权,以监督网络各层的特征提取。本文模型在测试集上的测试结果如下:Dice系数为0.8843,Jaccard系数为0.7926。实验结果表明,相比其他常用方法,本文模型在冠脉血管分割上具有较强的鲁棒性,在低对比度下能够有效抑制噪声,对冠脉血管具有更好的分割效果。

     

  • 图 1  模型网络结构

    Figure 1.  Network structure of the proposed model

    图 2  ConvNeXt模块

    Figure 2.  ConvNeXt block

    图 3  修改后的ConvNeXt模块

    Figure 3.  Modified ConvNeXt block

    图 4  特征金字塔网络

    Figure 4.  Feature Pyramid Network

    图 5  金字塔特征级联(PFC)

    Figure 5.  Pyramid Feature Concatenation(PFC)

    图 6  SE注意力机制

    Figure 6.  SE attention mechanism

    图 7  分组注意力机制模块

    Figure 7.  Group Attention block

    图 8  验证集上不同算法的Dice曲线

    Figure 8.  Dice curves of different algorithms on the testing set

    图 9  不同算法分割效果对比图

    Figure 9.  Comparison of segmentation effects with different algorithm

    表  1  各模块对性能的影响

    Table  1.   Each module’s impact on performance

    网络JaccardDice
    BaseNet0.6476±0.00980.7861±0.0073
    BaseNet+Conv.7×70.6606±0.01190.7956±0.0086
    BaseNet+ConvNeXt block0.7104±0.00650.8307±0.0044
    BaseNet+修改后的 ConvNeXt block0.7234±0.00440.8395±0.0030
    BaseNet+PFC0.7036±0.00880.8260±0.0061
    BaseNet+PFC+SE0.7104±0.00430.8260±0.0061
    BaseNet+PFC+SE+加权Loss0.7364±0.00620.8482±0.0041
    BaseNet+GA0.7044±0.00280.8266±0.0019
    BaseNet+Conv.7×7 +PFC+SE +修改后的ConvNeXt block+GA+加权Loss0.7926±0.00580.8843±0.0036
    下载: 导出CSV

    表  2  不同算法测试结果

    Table  2.   Test results for different algorithms

    网络JaccardDiceAUCAccuracyPrecisionSensitivitySpecificity
    U-Net0.71160.83150.97330.97060.87690.79080.9888
    ResUNeXt0.68490.81300.87410.96830.88470.75260.9901
    TransUnet0.74210.85190.98840.97480.86280.84160.9873
    MultiResUnet0.76640.86770.98420.97610.87750.85830.9879
    Ours0.79260.88430.99130.97830.90080.85970.9904
    下载: 导出CSV
  • [1] WANG H, NAGHAVI M, ALLEN C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. The Lancet, 2016, 388(10053): 1459-1544.
    [2] JIANGPING S, ZHE Z, WEI W, et al. Assessment of coronary artery stenosis by coronary angiography: a head-to-head comparison with pathological coronary artery anatomy[J]. Circulation: Cardiovascular Interventions, 2013, 6(3): 262-268.
    [3] FLEMING R M, KIRKEEIDE R L, SMALLING R W, et al. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography[J]. Journal of the American College of Cardiology, 1991, 18(4): 945-951.
    [4] WIJNS W, SERRUYS P W, REIBER J H, et al. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy[J]. Circulation, 1985, 71(2): 273-279.
    [5] GARRONE P, BIONDI-ZOCCAI G, SALVETTI I, et al. Quantitative coronary angiography in the current era: principles and applications[J]. Journal of Interventional Cardiology, 2009, 22(6): 527-536.
    [6] BLONDEL C, MALANDAIN G, VAILLANT R, et al. Reconstruction of coronary arteries from a single rotational X-ray projection sequence[J]. IEEE Transactions on Medical Imaging, 2006, 25(5): 653-663.
    [7] SHECHTER G, DEVERNAY F, COSTE-MANIÈRE E, et al. Three-dimensional motion tracking of coronary arteries in biplane cineangiograms[J]. IEEE Transactions on Medical Imaging, 2003, 22(4): 493-503.
    [8] SUN ZH, ZHOU Y. Assessing cardiac dynamics based on X-ray coronary angiograms[J]. J. Multim., 2013, 8(1): 48-55.
    [9] FELFELIAN B, FAZLALI H R, KARIMI N, et al. Vessel segmentation in low contrast X-ray angiogram images[C]. 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016: 375-379.
    [10] CHEN Y, ZHANG Y D, YANG J, et al. Curve-like structure extraction using minimal path propagation with backtracking[J]. IEEE Transactions on Image Processing, 2016, 25(2): 988-1003.
    [11] JIN M X, LI R, JIANG J, et al. Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint[J]. Pattern Recognition, 2017, 63: 653-666.
    [12] BANKHEAD P, SCHOLFIELD C N, MCGEOWN J G, et al. Fast retinal vessel detection and measurement using wavelets and edge location refinement[J]. PLoS One, 2012, 7(3): e32435.
    [13] LI Y L, ZHOU SH J, WU J H, et al. A novel method of vessel segmentation for X-ray coronary angiography images[C]. 2012 Fourth International Conference on Computational and Information Sciences, IEEE, 2012: 468-471.
    [14] SOARES J V B, LEANDRO J J G, CESAR R M, et al. Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222.
    [15] FRANGI A F, NIESSEN W J, VINCKEN K L, et al. Multiscale vessel enhancement filtering[C]. Proceedings of the 1st International Conference on Medical Image Computing and Computer-Assisted Intervention— MICCAI’98, Springer, 1998: 130-137.
    [16] M’HIRI F, DUONG L, DESROSIERS C, et al. Vessel walker: coronary arteries segmentation using random walks and hessian-based vesselness filter[C]. 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, 2013: 918-921.
    [17] DEHKORDI M T, HOSEINI A M D, SADRI S, et al. Local feature fitting active contour for segmenting vessels in angiograms[J]. IET Computer Vision, 2014, 8(3): 161-170.
    [18] LAW M W K, CHUNG A C S. Efficient implementation for spherical flux computation and its application to vascular segmentation[J]. IEEE Transactions on Image Processing, 2009, 18(3): 596-612.
    [19] ORLANDO J I, PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Bio-Medical Engineering, 2017, 64(1): 16-27.
    [20] 郑跃坤, 葛明锋, 常智敏, 等. 基于残差网络的结直肠内窥镜图像超分辨率重建方法[J]. 中国光学(中英文),2023,16(5):1022-1033.

    ZHENG Y K, GE M F, CHANG ZH M, et al. Super-resolution reconstruction for colorectal endoscopic images based on a residual network[J]. Chinese Optics, 2023, 16(5): 1022-1033. (in Chinese).
    [21] 白瑞峰, 江山, 孙海江, 等. 基于编码解码结构的微血管减压图像实时语义分割[J]. 中国光学(中英文),2022,15(5):1055-1065.

    BAI R F, JIANG SH, SUN H J, et al. Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure[J]. Chinese Optics, 2022, 15(5): 1055-1065. (in Chinese).
    [22] ZHAO H SH, SHI J P, QI X J, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 6230-6239.
    [23] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
    [24] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Springer, 2015: 234-241.
    [25] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87.
    [26] PAN S W, ZHANG W, ZHANG W J, et al. Diagnostic model of coronary microvascular disease combined with full convolution deep network with balanced cross-entropy cost function[J]. IEEE Access, 2019, 7: 177997-178006.
    [27] XIAN ZH CH, WANG X Q, YAN SH D, et al. Main coronary vessel segmentation using deep learning in smart medical[J]. Mathematical Problems in Engineering, 2020, 2020: 8858344.
    [28] YANG S, KWEON J, KIM Y H. Major vessel segmentation on X-ray coronary angiography using deep networks with a novel penalty loss function[C]. Proceedings of Machine Learning Research, MIDL, 2019.
    [29] JUN T J, KWEON J, KIM Y H, et al. T-Net: Nested encoder-decoder architecture for the main vessel segmentation in coronary angiography[J]. Neural Networks, 2020, 128: 216-233.
    [30] LI L ZH, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2020: 3645-3654.
    [31] LIU ZH, MAO H Z, WU CH Y, et al. A ConvNet for the 2020s[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2022: 11966-11976.
    [32] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 936-944.
    [33] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 7132-7141.
    [34] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS, 2017: 5998-6008.
    [35] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
    [36] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv: 2102.04306, 2021.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  70
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-21
  • 修回日期:  2023-12-05
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回