留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时双环谐振腔光谱包络拟合

赵凯浩 李明宇 王朝宇 陈鑫 关博仁 何建军 林初月 董文飞

赵凯浩, 李明宇, 王朝宇, 陈鑫, 关博仁, 何建军, 林初月, 董文飞. 实时双环谐振腔光谱包络拟合[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0195
引用本文: 赵凯浩, 李明宇, 王朝宇, 陈鑫, 关博仁, 何建军, 林初月, 董文飞. 实时双环谐振腔光谱包络拟合[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0195
ZHAO Kai-hao, LI Ming yu, WANG Zhao-yu, CHEN Xin, GUAN Bo-ren, HE Jian Jun, LIN Chu-yue, DONG Wen-fei. Real-time cascaded microring resonators spectral envelope fitting[J]. Chinese Optics. doi: 10.37188/CO.2023-0195
Citation: ZHAO Kai-hao, LI Ming yu, WANG Zhao-yu, CHEN Xin, GUAN Bo-ren, HE Jian Jun, LIN Chu-yue, DONG Wen-fei. Real-time cascaded microring resonators spectral envelope fitting[J]. Chinese Optics. doi: 10.37188/CO.2023-0195

实时双环谐振腔光谱包络拟合

doi: 10.37188/CO.2023-0195
基金项目: 国家自然科学基金项目(No. 62027825);吉林省自然科学基金(No.20220101130JC);高等学校学科创新引智计划(No. 111计划D21009)
详细信息
    作者简介:

    赵凯浩(1999—),山西吕梁人,男,长春理工大学硕士研究生,2021年于长春理工大学理学院获得学士学位,主要从事微纳光子学与光子学器件方面的研究。E-mail:2021100278@mails.cust.edu.cn

    李明宇(1978—),吉林长春人,男,博士,教授,2006年于浙江大学光电信息工程学院获得博士学位,2006年至2017年浙江大学光电科学与工程学院副教授,2018年至今长春理工大学光电工程学院教授,目前主要从事集成光学方面的研究。E-mail:limingyu@cust.edu.cn

Real-time cascaded microring resonators spectral envelope fitting

Funds: Supported by the National Natural Science Foundation of China (No. 62027825); Natural Science Foundation of Jilin Province (No. 20220101130JC); This work is also supported by the 111 Project of China (No. D21009)
More Information
  • 摘要:

    双环级联谐振腔(Cascaded Microring Resonators, CMRR)传感器作为一种新型的光学传感器,因其具有高灵敏度,易于集成,功耗小等优点被广泛应于与生物、医学等领域。本文为了实现CMRR传感器输出光谱的实时数据分析处理,提出了一种基于Python的实时CMRR传感器输出光谱包络拟合方法。首先,利用不同的拟合模型对CMRR传感器输出光谱进行拟合,接着,通过灵敏度误差百分比对不同拟合模型的拟合误差进行比较,得出平滑样条拟合法在实时处理CMRR传感器输出光谱过程中表现最佳,最后利用不同浓度的NaCl溶液进行实时输出光谱采集处理,验证了CMRR传感器输出光谱实时采集处理程序的可靠性。实验结果表明,CMRR传感器的波长飘移量与溶液浓度呈线性关系。通过计算可知CMRR传感器对于盐水的灵敏度约为671.03529 nm/RIU。

     

  • 图 1  CMRR传感器显微图

    Figure 1.  CMRR sensor micrograph

    图 2  CMRR传感器输出端输出光谱

    Figure 2.  CMRR sensor output spectrum

    图 3  CMRR传感器输出光谱检测原理图

    Figure 3.  CMRR Sensor System Schematic

    图 4  微环传感器数据采集流程图

    Figure 4.  Microring sensor data acquisition flow chart

    图 5  不同包络拟合法比较

    Figure 5.  Comparison of different envelope fitting methods

    图 6  CMRR谐振腔传感器输出光谱采集效果

    Figure 6.  Transmission spectrum acquisition effect of CMRR resonator sensor

    图 7  输出光谱飘移量与有效值点

    Figure 7.  Output spectrum drift and effective point

    图 8  有效飘移量与浓度拟合关系。

    Figure 8.  The effective drift of the concentration of the solution and the linear plot of the concentration

    表  1  实验仪器与设备型号

    Table  1.   Experimental instruments and equipment models

    仪器名称实验用途设备型号生产公司
    微流注射泵定速进样ZSB-SY03-60-M03-1南京润泽流体
    可调谐激光器光源81600B( DE43501059)Agilent
    功率计探测输出光谱N7748AAgilent
    下载: 导出CSV

    表  2  实验仪器与设备型号

    Table  2.   Experimental instruments and equipment models

    拟合方法R-squared灵敏度( nm/RIU)误差百分比(%)
    理想状态674.205
    平滑拟合法0.998132234685.5231.67
    高斯拟合法0.994447952625.2467.29
    洛伦兹拟合法0.991580189634.4195.91
    傅里叶拟合法0.969335425663.8641.53
    下载: 导出CSV
  • [1] BOGAERTS W, DE HEYN P, VAN VAERENBERGH T, et al. Silicon microring resonators[J]. Laser & Photonics Reviews, 2012, 6(1): 47-73.
    [2] 谢佳一, 苏国帅, 李明宇, 等. 反射型法布里-珀罗腔和微环谐振腔级联的温度传感器[J]. 光学学报,2022,42(23):2328002. doi: 10.3788/AOS202242.2328002

    XIE J Y, SU G SH, LI M Y, et al. Temperature sensor cascading reflective Fabry-Perot cavity with microring resonator[J]. Acta Optica Sinica, 2022, 42(23): 2328002. (in Chinese). doi: 10.3788/AOS202242.2328002
    [3] 刘春娟, 王嘉伟, 吴小所, 等. 一种光栅辅助狭缝微环谐振器的传感特性[J]. 光学学报,2022,42(16):1613001. doi: 10.3788/AOS202242.1613001

    LIU CH J, WANG J W, WU X S, et al. Sensing characteristics of grating-assisted slot microring resonator[J]. Acta Optica Sinica, 2022, 42(16): 1613001. (in Chinese). doi: 10.3788/AOS202242.1613001
    [4] ZHUANG SH Q, FENG J J, LIU H P, et al. Optical multistability in a cross-coupled double-ring resonator system[J]. Optics Communications, 2022, 507: 127637. doi: 10.1016/j.optcom.2021.127637
    [5] 吴蓉, 张皓辰. 耦合区数量对鼎形微环谐振器输出的影响[J]. 中国光学,2023,16(6):1493-1500. doi: 10.37188/CO.EN-2023-0009

    WU R, ZHANG H CH. The influence of the number of coupling regions on the output of the ding-shaped microring resonator[J]. Chinese Optics, 2023, 16(6): 1493-1500. (in Chinese). doi: 10.37188/CO.EN-2023-0009
    [6] 赵荣宇, 崔建功, 余亚鑫, 等. 面向倏逝波传感的光纤谐振腔设计与封装研究[J]. 传感器与微系统,2022,41(6):21-24.

    ZHAO R Y, CUI J G, YU Y X, et al. Design and packaging of optical fiber resonators for evanescent wave sensing[J]. Transducer and Microsystem Technologies, 2022, 41(6): 21-24. (in Chinese).
    [7] 晏崇宇, 高劭宏, 宋东雨, 等. 单环和双环微环谐振腔应用于马赫-曾德尔干涉仪滤波器的特性分析[J]. 光子学报,2015,44(7):0713003. doi: 10.3788/gzxb20154407.0713003

    YAN CH Y, GAO SH H, SONG D Y, et al. Characteristic analysis of single and double Micro ring resonant cavity used in Mach-Zehnder interferometer filter[J]. Acta Photonica Sinica, 2015, 44(7): 0713003. (in Chinese). doi: 10.3788/gzxb20154407.0713003
    [8] 朱庆明. 基于波长控制的谐振型硅基光开关及光滤波器研究[D]. 上海: 上海交通大学, 2020.

    ZHU Q M. Research on resonant silicon photonic switch and filter based on wavelength locking[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese).
    [9] 肖泽华, 李明宇, 苏国帅, 等. 基于扫描反射镜结构的多路光开关[J]. 中国光学,2023,16(1):136-143. doi: 10.37188/CO.2022-0020

    XIAO Z H, LI M Y, SU G SH, et al. Multi-channel optical switching based on scanning mirror instrumentation[J]. Chinese Optics, 2023, 16(1): 136-143. (in Chinese). doi: 10.37188/CO.2022-0020
    [10] DE VOS K, BARTOLOZZI I, SCHACHT E, et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing[J]. Optics Express, 2007, 15(12): 7610-7615. doi: 10.1364/OE.15.007610
    [11] LIU W L, LI M, GUZZON R S, et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser[J]. Nature Communications, 2017, 8: 15389. doi: 10.1038/ncomms15389
    [12] 史冰耀. 面向免标记型光学生物传感的微环谐振器的研究[D]. 北京: 中央民族大学, 2023.

    SHI B Y. Research on Microring resonators for Label Free optical biosensing[D]. Beijing: Minzu University of China, 2023. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
    [13] AMBIKA S, VANJERKHEDE K. Modeling and analysis of photonic sensor based on ring resonator for glucose detection[J]. Journal of Optics, 2023, 52(4): 1837-1844. doi: 10.1007/s12596-022-01081-x
    [14] 韩源. 基于光波导环形谐振腔凹槽结构的声传感特性研究[D]. 太原: 中北大学, 2023.

    HAN Y. Acoustic sensing characteristics research based on the groove structure of optical waveguide resonator[D]. Taiyuan: North University of China, 2023. (in Chinese).
    [15] PAN J SH, LI Q, FENG Y M, et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography[J]. Nature Communications, 2023, 14(1): 3250. doi: 10.1038/s41467-023-39075-3
    [16] 祝敏, 张文栋, 崔建功, 等. 面向声压传感的硅基槽式谐振腔设计及研究[J]. 仪表技术与传感器,2023(1):1-6. doi: 10.3969/j.issn.1002-1841.2023.01.001

    ZHU M, ZHANG W D, CUI J G, et al. Design and research of silicon-based resonator for sound pressure sensing[J]. Instrument Technique and Sensor, 2023(1): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-1841.2023.01.001
    [17] CHEN Y Q, YU F, YANG CH, et al. Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels[J]. Optics Communications, 2015, 344: 129-133. doi: 10.1016/j.optcom.2015.01.028
    [18] CARDENOSA-RUBIO M C, ROBISON H M, BAILEY R C. Recent advances in environmental and clinical analysis using microring resonator–based sensors[J]. Current Opinion in Environmental Science & Health, 2019, 10: 38-46.
    [19] PIRZADA M, ALTINTAS Z. Recent progress in optical sensors for biomedical diagnostics[J]. Micromachines, 2020, 11(4): 356. doi: 10.3390/mi11040356
    [20] JIN L, LI M Y, HE J J. Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source[J]. Optics Letters, 2011, 36(7): 1128-1130. doi: 10.1364/OL.36.001128
    [21] JIN L, LI M Y, HE J J. Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors[J]. Journal of Lightwave Technology, 2012, 30(12): 1994-2002. doi: 10.1109/JLT.2012.2187272
    [22] CLAES T, BOGAERTS W, BIENSTMAN P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit[J]. Optics Express, 2010, 18(22): 22747-22761. doi: 10.1364/OE.18.022747
    [23] 苏畅, 朱慧慧, 曹紫葳, 等. 双环级联谐振腔传感器透射谱线包络拟合方法[J]. 光子学报,2018,47(10):1023002. doi: 10.3788/gzxb20184710.1023002

    SU CH, ZHU H H, CAO Z W, et al. Fitting methods of transmission spectrum envelope in cascaded double-ring resonator sensors[J]. Acta Photonica Sinica, 2018, 47(10): 1023002. (in Chinese). doi: 10.3788/gzxb20184710.1023002
    [24] POON J K S, SCHEUER J, MOOKHERJEA S, et al. Matrix analysis of microring coupled-resonator optical waveguides[J]. Optics Express, 2004, 12(1): 90-103. doi: 10.1364/OPEX.12.000090
    [25] 刘勇. 基于SOI的环形谐振腔生物传感器研究[D]. 杭州: 浙江大学, 2017.

    LIU Y. Biosensor based on SOI microring resonators[D]. Hangzhou: Zhejiang University, 2017. (in Chinese).
    [26] 赵琪涵, 王永红, 高新亚, 等. 基于平滑样条拟合的相位图像滤波评价方法[J]. 光学学报,2018,38(8):0815020. doi: 10.3788/AOS201838.0815020

    ZHAO Q H, WANG Y H, GAO X Y, et al. Filtering evaluation method of phase images based on smooth spline fitting[J]. Acta Optica Sinica, 2018, 38(8): 0815020. (in Chinese). doi: 10.3788/AOS201838.0815020
    [27] 姚泽楷, 蔡耀仪, 李诗文, 等. 基于平滑样条曲线结合离散状态转移算法的拉曼光谱基线校正方法[J]. 中国激光,2022,49(18):1811001. doi: 10.3788/CJL202249.1811001

    YAO Z K, CAI Y Y, LI SH W, et al. Baseline correction for Raman spectroscopy using cubic spline smoothing combined with discrete state transformation algorithm[J]. Chinese Journal of Lasers, 2022, 49(18): 1811001. (in Chinese). doi: 10.3788/CJL202249.1811001
    [28] 李立. 基于贝叶斯框架的光滑样条模型研究[D]. 上海: 华东师范大学, 2023.

    LI L. Advances on smoothing spline model based on Bayesian framework[D]. Shanghai: East China Normal University, 2023. (in Chinese).
    [29] 高楠, 于永波, 杜振辉, 等. 基于高斯/洛伦兹线型拟合比的谐波检测压强反演研究[J]. 红外与激光工程,2023,52(8):20230428. doi: 10.3788/IRLA20230428

    GAO N, YU Y B, DU ZH H, et al. Research on harmonic detection pressure inversion based on Gauss/Lorentz line fitting ratio[J]. Infrared and Laser Engineering, 2023, 52(8): 20230428. (in Chinese). doi: 10.3788/IRLA20230428
    [30] 张景源, 陈北北, 杨永兴, 等. 融合遗传算法和BP神经网络的光斑定位方法[J]. 中国光学,2023,16(2):407-414. doi: 10.37188/CO.2022-0084

    ZHANG J Y, CHEN B B, YANG Y X, et al. Positioning algorithm for laser spot center based on BP neural network and genetic algorithm[J]. Chinese Optics, 2023, 16(2): 407-414. (in Chinese). doi: 10.37188/CO.2022-0084
    [31] 谭诗斌. Beta模型的柔性扩展与洛伦兹曲线拟合优化[J]. 数学的实践与认识,2023,53(7):154-168.

    TAN SH B. Flexible expansion of beta model and Lorentz curve fitting optimization[J]. Mathematics in Practice and Theory, 2023, 53(7): 154-168. (in Chinese).
    [32] 张凯, 门昌骞, 王文剑. 基于随机傅里叶特征空间的高斯核近似模型选择算法[J]. 数据采集与处理,2023,38(3):616-628.

    ZHANG K, MENG CH Q, WANG W J. Gaussian kernel approximation model selection algorithm based on random fourier feature space[J]. Journal of Data Acquisition and Processing, 2023, 38(3): 616-628. (in Chinese).
    [33] 屈文星, 刘浩, 秦楚, 等. 基于MATLAB傅里叶曲线拟合的天线跟踪精度评估方法[J]. 电子测量技术,2020,43(12):91-95.

    QU W X, LIU H, QIN CH, et al. Antenna tracking accuracy evaluation method based on MATLAB Fourier curve fitting[J]. Electronic Measurement Technology, 2020, 43(12): 91-95. (in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-05-20

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!