留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内腔式非稳腔DF激光光束质量研究

阮鹏 汪玉海 潘其坤 邵春雷 陈飞 郭劲

阮鹏, 汪玉海, 潘其坤, 邵春雷, 陈飞, 郭劲. 内腔式非稳腔DF激光光束质量研究[J]. 中国光学(中英文), 2024, 17(5): 1068-1074. doi: 10.37188/CO.2023-0210
引用本文: 阮鹏, 汪玉海, 潘其坤, 邵春雷, 陈飞, 郭劲. 内腔式非稳腔DF激光光束质量研究[J]. 中国光学(中英文), 2024, 17(5): 1068-1074. doi: 10.37188/CO.2023-0210
RUAN Peng, WANG Yu-hai, PAN Qi-kun, SHAO Chun-lei, CHEN Fei, GUO Jin. Study on beam quality of DF laser with inner cavity unstable resonator[J]. Chinese Optics, 2024, 17(5): 1068-1074. doi: 10.37188/CO.2023-0210
Citation: RUAN Peng, WANG Yu-hai, PAN Qi-kun, SHAO Chun-lei, CHEN Fei, GUO Jin. Study on beam quality of DF laser with inner cavity unstable resonator[J]. Chinese Optics, 2024, 17(5): 1068-1074. doi: 10.37188/CO.2023-0210

内腔式非稳腔DF激光光束质量研究

基金项目: 吉林省自然科学基金项目(No. 20220101207JC);激光与物质相互作用国家重点实验室开放基础研究课题(No. SKLLIM2115)
详细信息
    作者简介:

    阮 鹏(1985—),女,湖北宜昌人,博士,讲师,硕士生导师,2009年于东北林业大学获得学士学位,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位。主要从事中红外激光技术及理论研究。E-mail:eagle_laser@163.com

  • 中图分类号: TN248.5

Study on beam quality of DF laser with inner cavity unstable resonator

Funds: Supported by the Natural Science Foundation of Jilin Province (No. 20220101207JC); State Key Laboratory of Laser Interaction with Matter Project (No. SKLLIM2115)
More Information
  • 摘要:

    激光光束质量是衡量激光器应用性能的重要指标之一,面向远距离光电对抗应用场景,本文开展了非链式脉冲氟化氘(DF)激光器非稳腔设计和光束质量提升技术研究。设计了3组不同放大倍率的正分支虚共焦非稳腔,搭建了凸面腔镜横向和轴向两种支撑结构的非稳腔实验装置,其中横向支撑结构内置循环水冷却通道。以86.5%环围能量定义激光光斑大小,选用β因子评价激光光束质量,比较两种支撑方式下的输出能量和光束质量。研究发现:相同条件下,轴向支撑结构的非稳腔输出能量较横向支撑结构高6%,但远场发散角较横向支撑大9%;水冷横向支撑结构虽存在部分能量遮挡,但其较好的热稳定性显著提升了激光光束质量。在M=2.25的横向支撑内腔式非稳腔条件下获得了光束质量因子β=1.83、发散角θ0.865=0.63 mrad的激光光束。该条件下的激光单脉冲能量为2.34 J,激光脉宽为88.2 ns,峰值功率达到26.5 MW。

     

  • 图 1  正分支虚共焦非稳腔原理图

    Figure 1.  Schematic diagram of positive branch virtual confocal unstable resonator

    图 2  实验装置示意图

    Figure 2.  Schematic diagram of experimental setup

    图 3  凸镜安装结构示意图。(a)轴向支撑结构;(b)横向支撑结构

    Figure 3.  Schematic diagram of convex mirror installation structure. (a) Longitudinal support structure; (b) transverse support structure

    图 4  两种支撑结构下的激光近场能量对比图

    Figure 4.  Near field laser energy under two types of supporting structures

    图 5  激光近场光斑照片。(a)轴向支撑结构光斑;(b)横向支撑结构光斑

    Figure 5.  Near field laser spots for (a) longitudinal support structure and (b) transverse support structure

    图 6  不同放大倍率下的远场光束发散角

    Figure 6.  Far field divergence angles under different magnifications

    图 7  非稳腔脉宽

    Figure 7.  Pulse width of unstable resonator

    表  1  3种不同放大率的正分支非虚共焦非稳腔结构参数

    Table  1.   Structural parameters of three sets of positive branch virtual confocal unstable resonator with different magnifications

    M R1/ mm R2/ mm D /mm d /mm L/mm
    1.65 10727.5 6501.5 50 30.2 2113
    1.85 9197.8 4971.9 50 26.9 2113
    2.25 7606.8 3380.8 50 22.2 2113
    下载: 导出CSV

    表  2  不同放大率下的理论发散角

    Table  2.   Theoretical divergence angles for different M

    M1.651.852.25
    θ/ mrad0.49310.45440.3451
    下载: 导出CSV

    表  3  不同放大倍率下光束质量因子β数据

    Table  3.   Beam quality factor β data

    M β
    Transverse support Longitudinal support
    1.65 2.05 2.25
    1.85 1.98 2.18
    2.25 1.83 2.00
    下载: 导出CSV
  • [1] KLINGBEIL A E, JEFFRIES J B, HANSON R K. Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements[J]. Proceedings of the Combustion Institute, 2007, 31(1): 807-815. doi: 10.1016/j.proci.2006.07.228
    [2] KLOSNER M, WU C, HELLER D F. Mid-IR Laser system for advanced neurosurgery[J]. Proceedings of SPIE, 2014, 8928: 89280D.
    [3] STARECKI F, CHARPENTIER F, DOUALAN J L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sensors and Actuators B: Chemical, 2015, 207: 518-525. doi: 10.1016/j.snb.2014.10.011
    [4] PHAL Y, YEH K, BHARGAVA R. Mid-IR laser-based polarimetric imaging for polymeric and biological applications[J]. Proceedings of SPIE, 2021, 11656: 1165619.
    [5] FROLOV Y N, VELIKANOV S D, LAZARENKO V I, et al. Remote laser analyzer for methane sensing in the air of subterranean spaces[J]. Proceedings of SPIE, 2002, 4722: 140-144. doi: 10.1117/12.472258
    [6] TÖPFER T, PETROV K P, MINE Y, et al. Room-temperature mid-infrared laser sensor for trace gas detection[J]. Applied Optics, 1997, 36(30): 8042-8049. doi: 10.1364/AO.36.008042
    [7] VASIL’EV B I, MANNOUN O. IR differential-absorption lidars for ecological monitoring of the environment[J]. Quantum Electronics, 2006, 36(9): 801-820. doi: 10.1070/QE2006v036n09ABEH006577
    [8] VELIKANOV S D, ELUTIN A S, KUDRYASHOV E A, et al. Use of a DF laser in the analysis of atmospheric hydrocarbons[J]. Quantum Electronics, 1997, 27(3): 273-276. doi: 10.1070/QE1997v027n03ABEH000923
    [9] BRUNET H, MABRU M, VANNIER C. Improved DF performance of a repetitively pulsed HF/DF laser using a deuterated compound[J]. Proceedings of SPIE, 1997, 3092: 494-497. doi: 10.1117/12.270115
    [10] SERAFETINIDES A A, RICKWOOD K R, PAPADOPOULOS A D. Performance studies of a novel design atmospheric pressure pulsed HF/DF laser[J]. Applied Physics B, 1991, 52(1): 46-54. doi: 10.1007/BF00405686
    [11] IGNAT'EV A B, KAZANTSEV S Y, KONONOV I G, et al. On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry[J]. Quantum Electronics, 2008, 38(1): 69-72. doi: 10.1070/QE2008v038n01ABEH013546
    [12] PAN Q K, XIE J J, WANG CH R, et al. Non-chain pulsed DF laser with an average power of the order of 100 W[J]. Applied Physics B, 2016, 122(7): 200. doi: 10.1007/s00340-016-6475-z
    [13] 顾文珊, 梁小溪, 李红超, 等. 小型化轴流式非链式脉冲氟化氘激光器[J]. 红外与激光工程,2021,50(1):20200082. doi: 10.3788/IRLA20200082

    GU W SH, LIANG X X, LI H CH, et al. Miniaturized axial flow non-chain pulsed deuterium fluoride laser[J]. Infrared and Laser Engineering, 2021, 50(1): 20200082. (in Chinese). doi: 10.3788/IRLA20200082
    [14] TARASENKO V F, PANCHENKO A N. Efficient discharge-pumped non-chain HF and DF lasers[J]. Proceedings of SPIE, 2006, 6101: 61011P. doi: 10.1117/12.643226
    [15] APOLLONOV V V, KAZANTSEV S Y, SAIFULIN A V, et al. Discharge characteristics in a Nonchain HF(DF) laser[J]. Quantum Electronics, 2000, 30(6): 483-485. doi: 10.1070/QE2000v030n06ABEH001747
    [16] VELIKANOV S D, EVDOKIMOV P A, ZAPOL'SKY A F, et al. Pulse periodic HF (DF)-laser of atmospheric pressure with pulse repetition rate up to 2200 Hz[J]. Proceedings of SPIE, 2008, 7131: 71310V. doi: 10.1117/12.817070
    [17] 易爱平, 刘晶儒, 唐影, 等. 放电激励重复频率非链式HF激光器[J]. 强激光与粒子束,2011,23(7):1763-1766. doi: 10.3788/HPLPB20112307.1763

    YI A P, LIU J R, TANG Y, et al. Discharge pumped repetition- rate non- chain HF laser[J]. High Power Laser and Particle Beams, 2011, 23(7): 1763-1766. (in Chinese). doi: 10.3788/HPLPB20112307.1763
    [18] 朱峰, 黄珂, 周松青, 等. 基于非稳腔的非链式脉冲HF激光光束质量优化[J]. 中国激光,2017,44(4):0401002. doi: 10.3788/CJL201744.0401002

    ZHU F, HUANG K, ZHOU S Q, et al. Laser beam quality optimization of no-chain pulsed HF laser using unstable resonator[J]. Chinese Journal of Lasers, 2017, 44(4): 0401002. (in Chinese). doi: 10.3788/CJL201744.0401002
    [19] 阮鹏, 谢冀江, 张来明, 等. 非链式脉冲氟化氘激光器的动力学模拟和实验研究[J]. 中国激光,2013,40(7):0702002. doi: 10.3788/CJL201340.0702002

    RUAN P, XIE J J, ZHANG L M, et al. Dynamical simulation and experimental study of non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2013, 40(7): 0702002. (in Chinese). doi: 10.3788/CJL201340.0702002
    [20] 黄超, 黄珂, 易爱平, 等. 200 W重复频率中红外氟化氢化学激光器[J]. 中国激光,2019,46(8):0801005. doi: 10.3788/CJL201946.0801005

    HUANG CH, HUANG K, YI A P, et al. 200 W Mid-infrared HF chemical laser with repetition rate[J]. Chinese Journal of Lasers, 2019, 46(8): 0801005. (in Chinese). doi: 10.3788/CJL201946.0801005
    [21] APOLLONOV V V, BELEVTSEV A A, FIRSOV K N, et al. Advanced studies on powerful wide-aperture nonchain HF(DF) lasers with a self-sustained volume discharge to initiate chemical reaction[J]. Proceedings of SPIE, 2003, 5120: 529-541.
    [22] 谭改娟, 谢冀江, 潘其坤, 等. 非链式脉冲DF激光器非稳腔设计与实验研究[J]. 中国激光,2014,41(1):0102004. doi: 10.3788/CJL201441.0102004

    TANG G J, XIE J J, PAN Q K, et al. Design and experimental investigation on unstable resonator for non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2014, 41(1): 0102004. (in Chinese). doi: 10.3788/CJL201441.0102004
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  91
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2024-01-09
  • 网络出版日期:  2024-05-20

目录

    /

    返回文章
    返回