留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强大气湍流下扩展信标波前重建方法研究

毛浩迪 李远洋 郭劲

毛浩迪, 李远洋, 郭劲. 强大气湍流下扩展信标波前重建方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0213
引用本文: 毛浩迪, 李远洋, 郭劲. 强大气湍流下扩展信标波前重建方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0213
MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended targets under strong atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.2023-0213
Citation: MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended targets under strong atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.2023-0213

强大气湍流下扩展信标波前重建方法研究

doi: 10.37188/CO.2023-0213
基金项目: 国家重点实验室自主基础研究课题(No. SKLLIM2104)
详细信息
    作者简介:

    毛浩迪(1999—),男,山东潍坊人,博士研究生,2021年于长春理工大学获得获得学士学位,现就读于中国科学院大学长春光学精密机械与物理研究所,攻读光学工程学术博士学位,主要从事光束控制方面的研究。E-mail:329952674@qq.com

    郭 劲(1964—),男,吉林长春人,研究员,博士生导师,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光电观测设备研制、激光与物质相互作用、激光应用技术等方面的研究。E-mail:guojin@ciomp.ac.cn

  • 中图分类号: TP391.41

Wavefront reconstruction for extended targets under strong atmospheric turbulence

Funds: Supported by
More Information
  • 摘要:

    为解决强湍流环境下自适应光学系统无理想点信标波前探测的难题,本文提出了利用光场传感器(Plenoptic sensor)对扩展信标的光场信息探测的方法,对扩展信标的光场成像原理、波前位相重建算法、误差影响规律进行研究,利用等效法将扩展信标看做数个离散点的集合,简化扩展信标在光场传感器上的成像过程,然后将光场图像按照特定的方式重新排列组合,通过图像互相关法和Zernike模式法实现0°视场的波前重建。针对不同输入像差系数、单列微透镜单元数和噪声等误差影响因素进行仿真研究,结果表明:当输入像差在6.5λ以内时,波前重建精度约为0.08λ,对于图像分辨率为1080×1080、像元尺寸5.5 μm的图像探测器,单列微透镜单元数在40到50之间时波前重建精度最高,系统噪声则几乎不影响精度。最后,搭建扩展信标波前探测系统,通过探测扩展信标对0°视场的四种像差波前进行重建,实验系统的波前重建精度约0.04λ,基本满足自适应光学系统的波前检测要求。

     

  • 图 1  光场传感器结构图

    Figure 1.  Structure diagram of light field sensor

    图 2  点目标光场成像原理图

    Figure 2.  Schematic diagram of light field imaging for point targets

    图 3  物方平面与多个物方子区域的等效示意图

    Figure 3.  Equivalent diagram of object square plane and multiple object square subregions

    图 4  扩展目标光场成像原理图

    Figure 4.  Extended target light field imaging schematic

    图 5  扩展目标光场图像重组示意图

    Figure 5.  Extended target light field image recombination diagram

    图 6  分辨率板光场成像仿真

    Figure 6.  Light field imaging simulation of resolution plate

    图 7  像散波前重建仿真

    Figure 7.  Wavefront reconstruction simulation of astigmatism

    图 8  离焦波前重建仿真

    Figure 8.  Wavefront reconstruction simulation of defocusing

    图 9  慧差波前重建仿真

    Figure 9.  Wavefront reconstruction simulation of coma

    图 10  三瓣叶波前重建仿真

    Figure 10.  Wavefront reconstruction simulation of three-lobe

    图 11  波前重建误差随像差系数的变化曲线

    Figure 11.  Curve of wavefront reconstruction error with aberration coefficient

    图 12  波前重建误差随微透镜单元数量的变化曲线

    Figure 12.  Curve of wavefront reconstruction error with the number of microlens elements

    图 13  不同噪声的光场图像

    Figure 13.  Light field images with different noises

    图 14  实验系统结构图

    Figure 14.  Experimental system structure diagram

    图 15  实验系统

    Figure 15.  Experimental system

    图 16  分辨率板及探测区域

    Figure 16.  Resolution board and detection area

    图 17  目标光场图像

    Figure 17.  Aberration-free light field image

    图 18  像差波前重建结果

    Figure 18.  Reconstruction results of aberration wavefront

    表  1  系统结构参数

    Table  1.   System structure parameters

    参数值(mm)
    系统通光口径8.503
    物镜焦距1000
    微透镜单元口径0.1
    微透镜焦距11.76
    探测器宽度6
    像元尺寸0.0055
    下载: 导出CSV

    表  2  各像差对应重建波前的RMS误差

    Table  2.   RMS error of the reconstructed wavefront for each aberration

    像差像散离焦慧差三瓣叶
    重建波前残差RMS(λ)0.08930.11020.05760.0758
    下载: 导出CSV

    表  3  噪声下的重建波前RMS误差

    Table  3.   RMS error of the reconstructed wavefront for each aberration

    像差像散离焦慧差三瓣叶
    椒盐噪声重建波前残差RMS(λ)0.08500.12130.05870.0723
    高斯噪声重建波前残差RMS(λ)0.09320.11510.06060.0731
    下载: 导出CSV

    表  4  系统结构参数

    Table  4.   System structure parameter

    参数值(mm)
    系统通光口径12
    物镜焦距560
    微透镜单元口径0.3
    微透镜焦距14
    探测器宽度3
    像元尺寸0.0029
    下载: 导出CSV

    表  5  重建波前的RMS误差

    Table  5.   RMS error of reconstructed wavefront

    像差像散离焦慧差三瓣叶
    输入像差RMS(λ)0.24490.34640.10610.1060
    重建波前残差RMS(λ)0.04360.05320.03080.0306
    下载: 导出CSV
  • [1] BABCOCK H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
    [2] SPRANGLE P, TING A, PENANO J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(2): 138-148. doi: 10.1109/JQE.2008.2002501
    [3] CAMPBELL H I, GREENAWAY A H. Wavefront sensing: from historical roots to the state-of-the-art[J]. EAS Publications Series, 2006, 22: 165-185. doi: 10.1051/eas:2006131
    [4] 朱沁雨, 陈梅蕊, 陆焕钧, 等. 微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析[J]. 中国光学(中英文),2023,16(1):94-102. doi: 10.37188/CO.2022-0176

    ZHU Q Y, CHEN M R, LU H J, et al. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. (in Chinese). doi: 10.37188/CO.2022-0176
    [5] 王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文),2023,16(4):843-852. doi: 10.37188/CO.2022-0230

    WANG H M, QUAN J N, GE B ZH. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. (in Chinese). doi: 10.37188/CO.2022-0230
    [6] KO J, DAVIS C C. Comparison of the plenoptic sensor and the Shack-Hartmann sensor[J]. Applied Optics, 2017, 56(13): 3689-3698. doi: 10.1364/AO.56.003689
    [7] ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106. doi: 10.1109/34.121783
    [8] RODRÍGUEZ-RAMOS M J, CASTELLA F B, NAVA P F, et al. Wavefront and distance measurement using the CAFADIS camera[J]. Proceedings of SPIE, 2008, 7015: 70155Q. doi: 10.1117/12.789380
    [9] LV Y, ZHANG X ZH, MA H T, et al. Large viewing field wavefront sensing by using a lightfield system[J]. Proceedings of SPIE, 2013, 8905: 89052T. doi: 10.1117/12.2035212
    [10] JIANG P ZH, XU J P, LIANG Y H, et al. Plenoptic camera wavefront sensing with extended sources[J]. Journal of Modern Optics, 2016, 63(16): 1573-1578. doi: 10.1080/09500340.2016.1162336
    [11] ESLAMI M, WU CH SH, RZASA J, et al. Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence[J]. Proceedings of SPIE, 2012, 8517: 85170S. doi: 10.1117/12.943038
    [12] WU CH SH, DAVIS C C. Modified plenoptic camera for phase and amplitude wavefront sensing[J]. Proceedings of SPIE, 2013, 8874: 88740I.
    [13] WU CH SH, KO J, NELSON W, et al. Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera[J]. Proceedings of SPIE, 2014, 9224: 92240G.
    [14] WU CH SH, KO J, DAVIS C C. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor[J]. Journal of the Optical Society of America A, 2015, 32(5): 964-978. doi: 10.1364/JOSAA.32.000964
    [15] WU CH SH, KO J, DAVIS C C. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam[J]. Optics Express, 2016, 24(26): 29852-29871. doi: 10.1364/OE.24.029852
    [16] WU CH SH, KO J, DAVIS C C. Complex wavefront sensing with a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790Y.
    [17] WU CH SH, KO J, DAVIS C C. Imaging through strong turbulence with a light field approach[J]. Optics Express, 2016, 24(11): 11975-11986. doi: 10.1364/OE.24.011975
    [18] WU CH SH, KO J, DAVIS C C. Using a plenoptic sensor to reconstruct vortex phase structures[J]. Optics Letters, 2016, 41(14): 3169-3172. doi: 10.1364/OL.41.003169
    [19] WU CH SH, PAULSON D A, RZASA J R, et al. Comparison between the plenoptic sensor and the light field camera in restoring images through turbulence[J]. OSA Continuum, 2019, 2(9): 2511-2525. doi: 10.1364/OSAC.2.002511
    [20] KO J, WU CH SH, DAVIS C C. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790O.
    [21] HU J T, CHEN T, LIN X D, et al. Improved wavefront reconstruction and correction strategy for adaptive optics system with a plenoptic sensor[J]. IEEE Photonics Journal, 2021, 13(4): 1-8.
    [22] 王志冲. 强湍流下激光通信波前光场传感技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022.

    WANG ZH CH. Research on plenoptic wavefront sensing technique of free space laser communication under strong turbulence[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese).
    [23] LARDIÈRE O, CONAN R, CLARE R, et al. Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes[J]. Applied Optics, 2010, 49(31): G78-G94. doi: 10.1364/AO.49.000G78
    [24] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!