留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强大气湍流下扩展信标波前重建方法研究

毛浩迪 李远洋 郭劲

毛浩迪, 李远洋, 郭劲. 强大气湍流下扩展信标波前重建方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0213
引用本文: 毛浩迪, 李远洋, 郭劲. 强大气湍流下扩展信标波前重建方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0213
MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended beacons under strong atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.2023-0213
Citation: MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended beacons under strong atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.2023-0213

强大气湍流下扩展信标波前重建方法研究

doi: 10.37188/CO.2023-0213
基金项目: 国家重点实验室自主基础研究课题(No. SKLLIM2104)
详细信息
    作者简介:

    毛浩迪(1999—),男,山东潍坊人,博士研究生,2021年于长春理工大学获得学士学位,现就读于中国科学院长春光学精密机械与物理研究所,攻读光学工程学术博士学位,主要从事光束控制方面的研究。E-mail:329952674@qq.com

    郭 劲(1964—),男,吉林长春人,研究员,博士生导师,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光电观测设备研制、激光与物质相互作用、激光应用技术等方面的研究。E-mail:guojin@ciomp.ac.cn

  • 中图分类号: TP391.41

Wavefront reconstruction for extended beacons under strong atmospheric turbulence

Funds: Supported by Independent Basic Research Project of State Key Laboratory (No. SKLLIM2104)
More Information
  • 摘要:

    针对强湍流环境下自适应光学系统无理想点信标波前探测的难题,本文提出利用光场传感器(Plenoptic sensor)对扩展信标的光场信息探测。对扩展信标的光场成像原理、波前位相重建算法、误差影响规律进行研究,利用等效法将扩展信标看做数个离散点的集合,简化扩展信标在光场传感器上的成像过程,然后将光场图像按照特定方式重新进行排列组合。通过图像互相关法和Zernike模式法实现0°视场的波前重建。针对不同输入像差系数、单列微透镜单元数和噪声等误差影响因素进行仿真研究,结果表明:当输入像差在6.5 λ以内时,波前重建精度约为0.08 λ,对于图像分辨率为1080×1080、像元尺寸为5.5 μm的图像探测器,单列微透镜单元数在40~50之间时波前重建精度最高,此外,系统噪声几乎不影响精度。最后,搭建了扩展信标波前探测系统,通过探测扩展信标对0°视场的4种像差波前进行重建,实验系统的波前重建精度约0.04 λ,基本满足自适应光学系统的波前检测要求。

     

  • 图 1  光场传感器结构图

    Figure 1.  Structural diagram of the light field sensor

    图 2  点目标光场成像原理图

    Figure 2.  Principal diagram of light field imaging for point targets

    图 3  物方平面与多个物方子区域的等效示意图

    Figure 3.  Equivalent diagram of object plane and multiple object square sub-regions

    图 4  扩展目标光场成像原理图

    Figure 4.  Schematic diagram of extended target light field imaging

    图 5  扩展目标光场图像重组示意图

    Figure 5.  Schematic diagram of extended target light field image recombination

    图 6  分辨率板光场成像仿真结果

    Figure 6.  Simulation results of light field imaging of resolution plate

    图 7  像散波前重建仿真结果

    Figure 7.  Simulation results of astigmatism wavefront reconstruction

    图 8  离焦波前重建仿真结果

    Figure 8.  Simulation results of defocusing wavefront reconstruction

    图 9  慧差波前重建仿真结果

    Figure 9.  Simulation results of coma wavefront reconstruction

    图 10  三瓣叶波前重建仿真结果

    Figure 10.  Simulation results of three-lobe wavefront reconstruction

    图 11  4种像差波前重建误差随像差系数的变化曲线

    Figure 11.  Curves of wavefront reconstruction errors for four types of aberrations varying curve with aberration coefficient

    图 12  波前重建误差随微透镜单元数量的变化曲线

    Figure 12.  Wavefront reconstruction error curve with the number of microlens elements

    图 13  不同噪声的光场图像

    Figure 13.  Experimental system structural diagram

    图 14  实验系统结构图

    Figure 14.  System diagram of experimental structural

    图 15  实验系统

    Figure 15.  Experimental system

    图 16  分辨率板及探测区域

    Figure 16.  Resolution board and detection area

    图 17  目标光场图像

    Figure 17.  Aberration-free light field image

    图 18  像差波前重建结果

    Figure 18.  Aberrant wavefront reconstruction results

    表  1  仿真系统结构参数

    Table  1.   Structure parameters of simulation system (Unit: mm)

    参数
    系统通光口径 8.503
    物镜焦距 1000
    微透镜单元口径 0.1
    微透镜焦距 11.76
    探测器宽度 6
    像元尺寸 0.0055
    下载: 导出CSV

    表  2  各像差对应的重建波前RMS误差

    Table  2.   RMS error of the reconstructed wavefront corresponding to each aberration

    像差 重建波前残差eRMS(λ)
    像散 0.0893
    离焦 0.1102
    慧差 0.0576
    三瓣叶 0.0758
    下载: 导出CSV

    表  3  不同噪声下的重建波前残差

    Table  3.   RMS error of the reconstructed wavefront for each aberration under1different types of noise

    像差 椒盐噪声重建波前残差eRMS(λ) 高斯噪声重建波前残差eRMS(λ)
    像散 0.0850 0.0932
    离焦 0.1213 0.1151
    慧差 0.0587 0.0606
    三瓣叶 0.0723 0.0731
    下载: 导出CSV

    表  4  系统结构参数

    Table  4.   System structure parameters (Unit: mm)

    参数 参数值
    系统通光口径 12
    物镜焦距 560
    微透镜单元口径 0.3
    微透镜焦距 14
    探测器宽度 3
    像元尺寸 0.0029
    下载: 导出CSV

    表  5  几种像差的重建波前残差

    Table  5.   RMS errors of reconstructed wavefronts

    像差 输入像差RMS(λ) 重建波前残差RMS(λ)
    像散 0.2449 0.0436
    离焦 0.3464 0.0532
    慧差 0.1061 0.0308
    三瓣叶 0.1060 0.0306
    下载: 导出CSV
  • [1] BABCOCK H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
    [2] SPRANGLE P, TING A, PENANO J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(2): 138-148. doi: 10.1109/JQE.2008.2002501
    [3] CAMPBELL H I, GREENAWAY A H. Wavefront sensing: from historical roots to the state-of-the-art[J]. EAS Publications Series, 2006, 22: 165-185. doi: 10.1051/eas:2006131
    [4] 朱沁雨, 陈梅蕊, 陆焕钧, 等. 微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析[J]. 中国光学(中英文),2023,16(1):94-102. doi: 10.37188/CO.2022-0176

    ZHU Q Y, CHEN M R, LU H J, et al. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. (in Chinese). doi: 10.37188/CO.2022-0176
    [5] 王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文),2023,16(4):843-852. doi: 10.37188/CO.2022-0230

    WANG H M, QUAN J N, GE B ZH. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. (in Chinese). doi: 10.37188/CO.2022-0230
    [6] KO J, DAVIS C C. Comparison of the plenoptic sensor and the Shack-Hartmann sensor[J]. Applied Optics, 2017, 56(13): 3689-3698. doi: 10.1364/AO.56.003689
    [7] ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106. doi: 10.1109/34.121783
    [8] RODRÍGUEZ-RAMOS M J, CASTELLA F B, NAVA P F, et al. Wavefront and distance measurement using the CAFADIS camera[J]. Proceedings of SPIE, 2008, 7015: 70155Q. doi: 10.1117/12.789380
    [9] LV Y, ZHANG X ZH, MA H T, et al. Large viewing field wavefront sensing by using a lightfield system[J]. Proceedings of SPIE, 2013, 8905: 89052T. doi: 10.1117/12.2035212
    [10] JIANG P ZH, XU J P, LIANG Y H, et al. Plenoptic camera wavefront sensing with extended sources[J]. Journal of Modern Optics, 2016, 63(16): 1573-1578. doi: 10.1080/09500340.2016.1162336
    [11] ESLAMI M, WU CH SH, RZASA J, et al. Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence[J]. Proceedings of SPIE, 2012, 8517: 85170S. doi: 10.1117/12.943038
    [12] WU CH SH, DAVIS C C. Modified plenoptic camera for phase and amplitude wavefront sensing[J]. Proceedings of SPIE, 2013, 8874: 88740I.
    [13] WU CH SH, KO J, NELSON W, et al. Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera[J]. Proceedings of SPIE, 2014, 9224: 92240G.
    [14] WU CH SH, KO J, DAVIS C C. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor[J]. Journal of the Optical Society of America A, 2015, 32(5): 964-978. doi: 10.1364/JOSAA.32.000964
    [15] WU CH SH, KO J, DAVIS C C. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam[J]. Optics Express, 2016, 24(26): 29852-29871. doi: 10.1364/OE.24.029852
    [16] WU CH SH, KO J, DAVIS C C. Complex wavefront sensing with a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790Y.
    [17] WU CH SH, KO J, DAVIS C C. Imaging through strong turbulence with a light field approach[J]. Optics Express, 2016, 24(11): 11975-11986. doi: 10.1364/OE.24.011975
    [18] WU CH SH, KO J, DAVIS C C. Using a plenoptic sensor to reconstruct vortex phase structures[J]. Optics Letters, 2016, 41(14): 3169-3172. doi: 10.1364/OL.41.003169
    [19] WU CH SH, PAULSON D A, RZASA J R, et al. Comparison between the plenoptic sensor and the light field camera in restoring images through turbulence[J]. OSA Continuum, 2019, 2(9): 2511-2525. doi: 10.1364/OSAC.2.002511
    [20] KO J, WU CH SH, DAVIS C C. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790O.
    [21] HU J T, CHEN T, LIN X D, et al. Improved wavefront reconstruction and correction strategy for adaptive optics system with a plenoptic sensor[J]. IEEE Photonics Journal, 2021, 13(4): 1-8.
    [22] 王志冲. 强湍流下激光通信波前光场传感技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022.

    WANG ZH CH. Research on plenoptic wavefront sensing technique of free space laser communication under strong turbulence[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese).
    [23] LARDIÈRE O, CONAN R, CLARE R, et al. Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes[J]. Applied Optics, 2010, 49(31): G78-G94. doi: 10.1364/AO.49.000G78
    [24] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  34
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回