留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究

刘承麟 战俊彤 张肃 王超 付强 李英超 段锦 姜会林

刘承麟, 战俊彤, 张肃, 王超, 付强, 李英超, 段锦, 姜会林. 基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究[J]. 中国光学(中英文), 2024, 17(5): 1162-1174. doi: 10.37188/CO.2023-0217
引用本文: 刘承麟, 战俊彤, 张肃, 王超, 付强, 李英超, 段锦, 姜会林. 基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究[J]. 中国光学(中英文), 2024, 17(5): 1162-1174. doi: 10.37188/CO.2023-0217
LIU Cheng-lin, ZHAN Jun-tong, ZHANG Su, WANG Chao, FU Qiang, LI Ying-chao, DUAN Jin, JIANG Hui-lin. Visible polarized reflection of target material surface based on improved Blinn masking function[J]. Chinese Optics, 2024, 17(5): 1162-1174. doi: 10.37188/CO.2023-0217
Citation: LIU Cheng-lin, ZHAN Jun-tong, ZHANG Su, WANG Chao, FU Qiang, LI Ying-chao, DUAN Jin, JIANG Hui-lin. Visible polarized reflection of target material surface based on improved Blinn masking function[J]. Chinese Optics, 2024, 17(5): 1162-1174. doi: 10.37188/CO.2023-0217

基于改进型Blinn遮蔽函数的目标材料表面可见光偏振反射研究

基金项目: 国家自然科学基金(No. 62127813,No. 62375027);吉林省教育厅项目(No. JJKH20220738KJ);吉林省科技厅项目(No. 20230203029SF,No. 20210201093GX);光电测量与智能感知中关村开放实验室与北京控制工程研究所空间光电测量与感知实验室开放基金资助(No. LabSOMP-2022-11,No. LabSOMP-2022-12);重庆市自然科学基金(No. CSTB2023NSCO-MSX0504)
详细信息
    作者简介:

    战俊彤(1987—),女,吉林长春人,博士,副教授,2016年于长春理工大学光学工程专业获得工学博士学位,主要从事偏振信息处理技术、目标偏振特性技术方面的研究。E-mail:zhanjuntong@cust.edu.cn

  • 中图分类号: O436.3

Visible polarized reflection of target material surface based on improved Blinn masking function

Funds: Supported by the National Natural Science Foundation of China (No. 62127813, No. 62375027); The Educational Department of Jilin Province (No. JJKH20220738KJ); The Science and Technology Department of Jilin Province (No. 20230203029SF, No. 20210201093GX); Zhongguancun Open Laboratory of Optoelectronic Measurement and Intelligent Sensing and Beijing Institute of Control Engineering (No.LabSOMP-2022-11, No.LabSOMP-2022-12); Natural Science Foundation of Chongqing City (No. CSTB2023NSCO-MSX0504)
More Information
  • 摘要:

    为了研究典型目标材料表面的可见光偏振反射特性,本文针对传统“V”型表面结构缺陷,引入改进Blinn型阴影遮蔽函数,综合考虑镜面反射、漫反射和体散射的影响,建立了典型目标材料表面偏振六参量双向反射分布函数模型。对不同材料(聚丙烯塑料板、99氧化铝陶瓷板、铁板、绿漆铝板)目标样板进行可见光600 nm波段的偏振特性测试实验,并采用遗传算法进行参数反演。实验与仿真结果表明:与传统“V”型遮蔽模型相比,在入射角为50°,相对方位角为180°,0°~60°观测角对目标材料表面偏振特性的影响中,聚丙烯塑料板模型精度提升最大,RMSE百分比提升了70.61%;在入射角为50°,观测角为50°,DoLP随90°~270°相对方位角变化的过程中,与另两种参考模型相比,本模型精度至少提升了24.73%,线偏振度最小均方根误差值仅为1.29%。对于本文使用材料而言,偏振特性取决于其复折射率的值,当入射角确定,观测角为0°~60°,相对方位角在0°~360°内时,n/k的比值越大,线偏振度峰值越大。在可见光波段,波长对线偏振度的影响不大。

     

  • 图 1  BRDF的几何关系图

    Figure 1.  Geometric relationship diagram of BRDF

    图 2  典型目标材料表面的光反射过程

    Figure 2.  Light reflection process on the surface of typical target materials

    图 3  改进Blinn型遮蔽函数原理图

    Figure 3.  Schematic diagram of improved Blinn type masking function

    图 4  BRDF测量装置实物图

    Figure 4.  Physical diagram of BRDF measuring device

    图 5  测试材料样品实物图

    Figure 5.  Physical image of tested material samples

    图 6  入射角为50°时,观测角对不同材料DoLP的影响

    Figure 6.  The effect of view angle on DoLP of different materials when the incident angle is 50°

    图 7  不同入射角下典型目标表面材料在2${\text{π}} $空间内的DoLP分布

    Figure 7.  DoLP distribution of typical target surface materials in 2${\text{π}} $ under different incident angles

    图 8  不同入射角下目标表面材料仿真值与实测值对比

    Figure 8.  Comparison between simulated and measured values of target surface materials at different incidence angles

    图 9  观测角与相对方位角对不同材料DoLP影响

    Figure 9.  Effect of observation angle and relative azimuth on DoLP of different materials

    图 10  入射角为50°、观测角为50°下,DoLP随相对方位角的变化曲线

    Figure 10.  DoLP variation curves with relative azimuth at an incident angle of 50° and an observation angle of 50°

    图 11  不同目标材料波长与线偏振度的关系曲线

    Figure 11.  Relationship curves between wavelength and degree of linear polarization of different target materials

    表  1  不同目标材料参数的反演结果

    Table  1.   Inversion results of different target material parameters

    样品 参数
    $n$ $ n' $ $ \sigma $ $ c $ ${\rho _0}$ ${R_\infty }$
    聚丙烯塑料板 1.471 0.698 0.325 0.552 0.517 0.6643
    99氧化铝陶瓷板 1.713 0.596 0.283 0.732 0.4885 0.467
    铁板 2.836 3.277 0.3612 0.485 0.568 0.6942
    绿漆铝板 1.318 0.335 0.227 0.906 0.3715 0.359
    下载: 导出CSV

    表  2  在入射角为50°,相对方位角为180°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  2.   Root mean square error of DoLP simulation values and actual measurements for three models at an incident angle of 50° and a relative azimuth angle of 180°

    样品 RMSE1 RMSE2 RMSE3 百分比/%
    聚丙烯塑料板 0.0936 0.0486 0.0275 70.61%43.41%
    99氧化铝陶瓷板 0.0426 0.0274 0.0187 56.1%31.75%
    铁板 0.0504 0.0316 0.0223 55.75%29.43%
    绿漆铝板 0.0285 0.0188 0.0129 54.73%31.38%
    下载: 导出CSV

    表  3  在入射角60°,相对方位角180°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  3.   Root mean square error of DoLP simulation values and actual measurements for three models at an incident angle of 60° and a relative azimuth angle of 180°

    样品RMSE1RMSE2RMSE3百分比/%
    聚丙烯
    塑料板
    0.08310.05480.031262.45%
    43.07%
    99氧化铝
    陶瓷板
    0.05730.03880.022860.21%
    41.23%
    铁板0.06420.04020.024653.89%
    38.81%
    绿漆铝板0.03680.02490.017851.63%
    28.51%
    下载: 导出CSV

    表  4  在入射角50°,观测角50°时,三种模型DoLP仿真值与实测值的均方根误差

    Table  4.   Root mean square error of DoLP simulation and measurement values for three models at an incident angle of 50° and an observation angle of 50°

    样品RMSE1RMSE2RMSE3百分比/%
    聚丙烯
    塑料板
    0.06130.04840.028952.85%
    40.29%
    99氧化铝
    陶瓷板
    0.04190.02950.021548.69%
    27.12%
    铁板0.03770.02810.019648.01%
    30.24%
    绿漆铝板0.02540.01820.013746.06%
    24.73%
    下载: 导出CSV
  • [1] 丰玉强, 杜泽旭, 胡正飞. 镍含量对激光熔覆镍钛合金涂层组织与性能的影响[J]. 中国激光,2022,49(8):0802022. doi: 10.3788/CJL202249.0802022

    FENG Y Q, DU Z X, HU ZH F. Influence of Ni content on microstructure and properties of NiTi alloy coatings fabricated by laser cladding[J]. Chinese Journal of Lasers, 2022, 49(8): 0802022. (in Chinese). doi: 10.3788/CJL202249.0802022
    [2] 李昊, 胡德骄, 秦飞, 等. 原子层厚度超表面光场调控原理及应用[J]. 中国光学,2021,14(4):851-866. doi: 10.37188/CO.2021-0069

    LI H, HU D J, QIN F, et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. (in Chinese). doi: 10.37188/CO.2021-0069
    [3] 刘博韬, 陈勇, 帅斌财. 锆基合金包壳管保护涂层的材料、制备及特性[J]. 机电工程技术,2023,52(1):126-128,137. doi: 10.3969/j.issn.1009-9492.2023.01.030

    LIU B T, CHEN Y, SHUAI B C. Materials, preparation and properties of zirconium based alloy protective coatings for nuclear fuels[J]. Mechanical & Electrical Engineering Technology, 2023, 52(1): 126-128,137. (in Chinese). doi: 10.3969/j.issn.1009-9492.2023.01.030
    [4] 靳佩昕, 张兆栋, 马紫成, 等. 沉积路径对激光诱导MIG增材2319铝合金的影响[J]. 中国激光,2022,49(14):1402205. doi: 10.3788/CJL202249.1402205

    JIN P X, ZHANG ZH D, MA Z CH, et al. Effect of stacking path on laser induced MIG additive 2319 aluminum alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402205. (in Chinese). doi: 10.3788/CJL202249.1402205
    [5] 付强, 闫磊, 谭双龙, 等. 轻小型金属基增材制造光学系统[J]. 中国光学(中英文),2022,15(5):1019-1028. doi: 10.37188/CO.2022-0128

    FU Q, YAN L, TAN SH L, et al. Light-and-small optical systems by metal-based additive manufacturing[J]. Chinese Optics, 2022, 15(5): 1019-1028. (in Chinese). doi: 10.37188/CO.2022-0128
    [6] 邓光晟, 陈文卿, 余振春, 等. 基于导电塑料膜的角度不敏感宽带超材料吸波体设计及制备[J]. 光学学报,2022,42(22):2216001. doi: 10.3788/AOS202242.2216001

    DENG G SH, CHEN W Q, YU ZH CH, et al. Design and preparation of angle-insensitive broadband metamaterial absorber based on conductive plastic film[J]. Acta Optica Sinica, 2022, 42(22): 2216001. (in Chinese). doi: 10.3788/AOS202242.2216001
    [7] TOBIN R, HALIMI A, MCCARTHY A, et al. Long-range depth profiling of camouflaged targets using single-photon detection[J]. Optical Engineering, 2018, 57(3): 031303.
    [8] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003

    DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese). doi: 10.11846/j.issn.1001_8891.201403003
    [9] 莫春和, 段锦, 付强, 等. 国外偏振成像军事应用的研究进展(下)[J]. 红外技术,2014,36(4):265-270. doi: 10.11846/j.issn.1001_8891.201404002

    MO CH H, DUAN J, FU Q, et al. Review of polarization imaging technology for international military application (II)[J]. Infrared Technology, 2014, 36(4): 265-270. (in Chinese). doi: 10.11846/j.issn.1001_8891.201404002
    [10] PATTY C H L, TEN KATE I L, BUMA W J, et al. Circular spectropolarimetric sensing of vegetation in the field: possibilities for the remote detection of extraterrestrial life[J]. Astrobiology, 2019, 19(10): 1221-1229. doi: 10.1089/ast.2019.2050
    [11] 王炫力, 刘爽, 谢敏, 等. 铈掺杂Y3Al5O12热障涂层陶瓷材料的制备与性能研究[J]. 中国稀土学报,2023,41(6):1119-1125.

    WANG X L, LIU SH, XIE M, et al. Preparation and properties of cerium doped Y3Al5O12 thermal barrier coating ceramic materials[J]. Journal of the Chinese Society of Rare Earths, 2023, 41(6): 1119-1125. (in Chinese).
    [12] 吴玉茵, 卜铁伟, 王真. 多波段伪装隐身涂层织物的制备研究与应用[J]. 化工新型材料,2021,49(3):248-251.

    WU Y Y, BU T W, WANG ZH. Research on preparation and application of multi band camouflage coating fabric[J]. New Chemical Materials, 2021, 49(3): 248-251. (in Chinese).
    [13] 马王杰慧, 刘彦磊, 陈志影, 等. 变温下材料表面近红外双向反射分布函数的测量研究[J]. 中国光学,2020,13(5):1115-1123. doi: 10.37188/CO.2019-0256

    MA W J H, LIU Y L, CHEN ZH Y, et al. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. (in Chinese). doi: 10.37188/CO.2019-0256
    [14] VOSCHULA I V, DLUGUNOVICH V A, ZHUMAR A Y. Bidirectional reflectance distribution function of thermal control coatings and heat-shielding materials illuminated by polarized light[J]. Journal of Applied Spectroscopy, 2013, 80(2): 197-204. doi: 10.1007/s10812-013-9745-0
    [15] RENHORN I G E, HALLBERG T, BOREMAN G D. Efficient polarimetric BRDF model[J]. Optics Express, 2015, 23(24): 31253-31273. doi: 10.1364/OE.23.031253
    [16] 高明, 宋冲, 巩蕾. 基于偏振双向反射分布函数的粗糙面光散射偏振特性研究[J]. 中国激光,2013,40(12):1213002. doi: 10.3788/CJL201340.1213002

    GAO M, SONG CH, GONG L. Analysis of polarization characteristics about rough surface light scattering based on polarized bidirectional reflectance distribution function[J]. Chinese Journal of Lasers, 2013, 40(12): 1213002. (in Chinese). doi: 10.3788/CJL201340.1213002
    [17] 杨敏, 方勇华, 吴军, 等. 基于Kubelka-Munk理论的涂层表面多参量偏振双向反射分布函数模型[J]. 光学学报,2018,38(1):0126002. doi: 10.3788/AOS201838.0126002

    YANG M, FANG Y H, WU J, et al. Multiple-component polarized bidirectional reflectance distribution function model for painted surfaces based on Kubelka-Munk theory[J]. Acta Optica Sinica, 2018, 38(1): 0126002. (in Chinese). doi: 10.3788/AOS201838.0126002
    [18] NICODEMUS F E, RICHMOND J C, HSIA J J, et al. Geometrical Considerations and Nomenclature for Reflectance[M]. Washington: U. S. Department of Commerce, National Bureau of Standards, 1977: 1-7.
    [19] PRIEST R G, GERMER T A. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, Infrared Information Analysis Center, 2000, 1: 169-181.
    [20] 刘宏, 朱京平, 王凯. 基于随机表面微面元理论的二向反射分布函数几何衰减因子修正[J]. 物理学报,2015,64(18):184213. doi: 10.7498/aps.64.184213

    LIU H, ZHU J P, WANG K. Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory[J]. Acta Physica Sinica, 2015, 64(18): 184213. (in Chinese). doi: 10.7498/aps.64.184213
    [21] MINNAERT M. The reciprocity principle in lunar photometry[J]. The Astrophysical Journal, 1941, 93: 403-410. doi: 10.1086/144279
    [22] LE HORS L, HARTEMANN P, DOLFI D, et al. Phenomenological model of paints for multispectral polarimetric imaging[J]. Proceedings of SPIE, 2001, 4370: 94-105. doi: 10.1117/12.440065
    [23] 于婷, 战俊彤, 马莉莉, 等. 椭球形粒子浓度对激光偏振传输特性的影响[J]. 中国激光,2019,46(2):0208002. doi: 10.3788/CJL201946.0208002

    YU T, ZHAN J T, MA L L, et al. Effect of ellipsoidal particle concentration on laser polarization transmission characteristics[J]. Chinese Journal of Lasers, 2019, 46(2): 0208002. (in Chinese). doi: 10.3788/CJL201946.0208002
    [24] 韦顺. 红外偏振成像特性分析[D]. 西安: 西安电子科技大学, 2020.

    WEI SH. Analysis of infrared polarization imaging characteristics[D]. Xi’an: Xidian University, 2020. (in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  54
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-03
  • 修回日期:  2024-01-09
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回