留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dy3+,Tb3+共掺氮化铝薄膜结构与发光特性

罗璇 孟河辰 王晓丹 陈子航 曾雄辉 高晓冬 郑树楠 毛红敏

罗璇, 孟河辰, 王晓丹, 陈子航, 曾雄辉, 高晓冬, 郑树楠, 毛红敏. Dy3+,Tb3+共掺氮化铝薄膜结构与发光特性[J]. 中国光学(中英文), 2024, 17(4): 733-741. doi: 10.37188/CO.2023-0219
引用本文: 罗璇, 孟河辰, 王晓丹, 陈子航, 曾雄辉, 高晓冬, 郑树楠, 毛红敏. Dy3+,Tb3+共掺氮化铝薄膜结构与发光特性[J]. 中国光学(中英文), 2024, 17(4): 733-741. doi: 10.37188/CO.2023-0219
LUO Xuan, MENG He-chen, WANG Xiao-dan, CHEN Zi-hang, ZENG Xiong-hui, GAO Xiao-dong, ZHENG Shu-nan, MAO Hong-min. Structure and cathodoluminescence properties of Dy3+ and Tb3+ doped AlN films[J]. Chinese Optics, 2024, 17(4): 733-741. doi: 10.37188/CO.2023-0219
Citation: LUO Xuan, MENG He-chen, WANG Xiao-dan, CHEN Zi-hang, ZENG Xiong-hui, GAO Xiao-dong, ZHENG Shu-nan, MAO Hong-min. Structure and cathodoluminescence properties of Dy3+ and Tb3+ doped AlN films[J]. Chinese Optics, 2024, 17(4): 733-741. doi: 10.37188/CO.2023-0219

Dy3+,Tb3+共掺氮化铝薄膜结构与发光特性

doi: 10.37188/CO.2023-0219
基金项目: 国家自然科学基金资助项目(No.61974158,No.61306004);江苏省自然科学基金(No. BK20191456,No. BK20221263);江苏省“十四五”光学工程重点学科项目资助(No. 2021135);江苏省研究生科研创新计划项目资助(No. KYCX22_3266)
详细信息
    作者简介:

    王晓丹(1980—),女,辽宁锦州人,教授,硕士生导师,2008 年于中国科学院上海光学精密机械研究所获得博士学位,现为苏州科技大学物理科学与技术学院教授,主要从事光功能材料的制备、性能表征及光电器件方面的研究。E-mail:xiaodanwang@mail.usts.edu.cn

    曾雄辉(1976—),男,湖南湘潭人,研究员,博士生导师,2005 年于中国科学院上海光学精密机械研究所获得博士学位,现为中国科学院苏州纳米技术与纳米仿生研究所研究员,主要从事宽禁带半导体材料制备、物性和结构研究。E-mail:xhzeng2007@sinano.ac.cn

  • 中图分类号: TN304.3

Structure and cathodoluminescence properties of Dy3+ and Tb3+ doped AlN films

Funds: Supported by National Natural Science Foundation of China (No. 61974158, No.61306004); Natural Science Fund of Jiangsu Province (No. BK20191456, No. BK20221263); Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_3266)
More Information
  • 摘要:

    通过离子注入方法,首次将Dy3+和Tb3+共掺入氮化铝(AlN)薄膜,并研究了其晶体结构、阴极荧光和能量传递机制。拉曼光谱(Raman)和X射线衍射(XRD)结果显示,在Tb3+剂量一定的情况下,Dy3+的注入会导致晶格内部压应力增大,随着Dy3+的持续注入,一部分点缺陷发生复合,内部部分压应力会得到释放。阴极荧光光谱(CL)显示,高剂量Tb3+注入下,随着Dy3+剂量的增加,Tb3+的发射强度与Dy3+的发射强度呈现出不同的变化趋势。进一步分析表明可能存在Tb3+5D47F6至Dy3+6H15/24F9/2的共振能量传递。通过研究发现在不同Tb3+和Dy3+注入剂量下,样品的发光颜色在黄绿色与橙黄色之间转变,色温在4042~5119K范围变化。由上述研究结果可知,通过改变Tb3+与Dy3+共注入的剂量比可以有效调控材料的发光色坐标与色温。

     

  • 图 1  (a) 样品S1~S3及(b) S4~S6的Raman光谱。插图给出了E2(high)随着不同剂量Dy3+注入下的变化趋势

    Figure 1.  Raman spectra of (a) S1, S2, S3 samples and (b) S4, S5, S6 samples. The inset shows the trend of E2(high) changes with different doses of Dy3+

    图 2  Tb3+和Dy3+注入AlN薄膜(a) S1~S3及(b) S4~S6 X射线衍射图,虚线标出了Bragg峰位置变化

    Figure 2.  X-ray diffractograms of Tb3+ and Dy3+ implanted AlN films. (a) S1-S3 samples; (b) S4-S6 samples. The dashed line indicates the change in Bragg peak position

    图 3  不同剂量下,Tb3+与Dy3+注入AlN的CL光谱图。(a) S1~S3样品;(b) S4~S6样品。(c), (d) Tb3+发光峰(I493)和Dy3+发光峰(I484)积分强度变化趋势

    Figure 3.  Cathodoluminescence (CL) spectra of AlN with different dosages of Tb3+ and Dy3+ injected. (a) S1-S3 samples; (b) S4-S6 samples. (c), (d) The variation trend of integrated intensities of Tb3+ emission peak (I493) and Dy3+ emission peak (I484)

    图 4  Tb3+与Dy3+间能级跃迁示意图

    Figure 4.  Energy transfer mechanism in the Tb3+ and Dy3+

    图 5  I0/ICpn/3 (n = 6、8和10)的线性拟合,当n = 6时观察到最佳拟合结果

    Figure 5.  Linear fitting between I0/I and Cpn/3 (n = 6, 8, 10), with the best fitting result observed when n = 6

    图 6  AlN: Tb3+,Dy3+样品发光色度坐标图

    Figure 6.  The CIE chromaticity diagram of the Tb3+ and Dy3+ co-doped AlN films

    表  1  AlN: Tb3+/Dy3+样品中离子注入剂量

    Table  1.   Ion implantation dose in AlN: Tb3+/Dy3+ samples

    SampleTb3+(at/cm2)Dy3+(at/cm2)
    S15×10141×1014
    S25×10145×1014
    S35×10141×1015
    S41×10151×1014
    S51×10155×1014
    S61×10151×1015
    下载: 导出CSV

    表  2  平均注入剂量Cp,临界距离Rc计算结果

    Table  2.   Calculation results of average injection dose Cp and critical distance Rc

    Sample Tb3+ /
    (at· cm−2
    Dy3+/
    (at· cm−2
    Cp/
    (%, atom fraction)
    Rc(nm)
    S1 5×1014 1×1014 0.4219 2.11448
    S2 5×1014 5×1014 0.7012 1.78531
    S3 5×1014 1×1015 1.0480 1.56149
    S4 1×1015 1×1014 0.7708 1.72986
    S5 1×1015 5×1014 1.0480 1.56149
    S6 1×1015 1×1015 1.3927 1.42028
    下载: 导出CSV

    表  3  不同剂量的Tb3+和Dy3+注入样品时的色度坐标与色温

    Table  3.   Luminescent chromaticity coordinates and color temperature of AlN: Tb3+/Dy3+ with different doses of Tb3+and Dy3+ions

    Sample Tb3+/(at·cm−2) Dy3+/(at·cm−2) CIE co-ordinates CCT/K
    x y
    S1 5×1014 1×1014 0.3446 0.3939 5119.6625
    S2 5×1014 5×1014 0.3775 0.3701 4042.5739
    S3 5×1014 1×1015 0.3506 0.3566 4817.7583
    S4 1×1015 1×1014 0.3560 0.4158 4845.6823
    S5 1×1015 5×1014 0.3685 0.3714 4310.2723
    S6 1×1015 1×1015 0.3422 0.3506 5110.9489
    下载: 导出CSV
  • [1] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302. doi: 10.1016/j.apsusc.2020.146825

    TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. doi: 10.1016/j.apsusc.2020.146825
    [2] CARDOSO J P S, CORREIA M R, VERMEERSCH R, et al. Europium-implanted AlN nanowires for red light-emitting diodes[J]. ACS Applied Nano Materials, 2022, 5(1): 972-984. doi: 10.1021/acsanm.1c03654
    [3] 丁寒. 基于NaYF4: Yb, Er上转换发光纳米材料的掌印和足迹增强显现[J]. 分析化学,2023,51(11):1774-1782. doi: 10.1063/1.4978855

    DING H. Enhanced Development of Palmprints and FootprintsBased on NaYF4: Yb, Er Upconversion Luminescent Nanomaterials[J]. Chinese Journal of Analytical Chemistry, 2023, 51(11): 1774-1782. doi: 10.1063/1.4978855
    [4] 郑天程, 李 月, 刘钰铃, 等. Cs2ZnCl4∶Ce3+, Mn2+的合成及其多模发光性能[J]. 应用化学,2023,40(12):1613-1622.

    ZHENG Tian-Cheng, LI Yue, LIU Yu-Ling, et al. Synthesis and Multi-Mode Luminescence Properties of Cs2ZnCl4∶Ce3+,Mn2+[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1613-1622.
    [5] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043
    [6] 王俊荣,孙倩倩,朱国庆,等. 稀土掺杂正交发光纳米晶:从基础到前沿应用[J]. 应用化学,2023,40(11):1475‐1493.

    WANG Jun-Rong,SUN Qian-Qian,ZHU Guo-Qing, et al. Rare-Earth-Doped Orthogonal Luminescent Nanocrystals:From Fundamentals to Frontier Applications[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1475‐1493.
    [7] 王晓莹,涂昊宇,李琪,等. 基于石墨烯掺杂的CuMOF/Cu(OH)2纳米棒阵列自支撑电极的制备及用于葡萄糖检测[J]. 分析化学,2023,51(9):1441-1451.

    WANG X Y, TU H Y, LI Q, et al. Efficient Electrochemical Sensor for Glucose DetectionBased on Self-Supporting Electrode of Graphene DopedCuMOF/Cu(OH)2 Nanorod Arrays[J]. Chinese Journal of Applied Chemistry, 2023, 51(9): 1441-1451.
    [8] DING SH J, LI H Y, ZHANG Q L, et al. The investigations of Dy: YAG and Dy, Tb: YAG as potentially efficient GaN blue LD pumped solid state yellow laser crystals[J]. Journal of Luminescence, 2021, 237: 118174. doi: 10.1016/j.jlumin.2021.118174
    [9] 胡萍, 刘晓萌, 田颖, 等. 直接泵浦中红外Dy: PbGa2S4激光器研究进展[J]. 发光学报,2022,43(12):1905-1914. doi: 10.37188/CJL.20220203

    HU P, LIU X M, TIAN Y, et al. Research progress of directly pumped mid-infrared Dy: PbGa2S4 lasers[J]. Chinese Journal of Luminescence, 2022, 43(12): 1905-1914. (in Chinese). doi: 10.37188/CJL.20220203
    [10] 龚宏波, 胡伟晔, 黄秋婷, 等. 基于表面增强拉曼光谱技术对负电性分子的高灵敏定性分析[J]. 分析化学,2023,51(7):1213-1221.

    GONG H B, HU W Y, HUANG Q T, et al. Highly Sensitive Qualitative Analysis of ElectronegativeMolecules Based on Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Applied Chemistry, 2023, 51(7): 1213-1221.
    [11] BENZ F, STRUNK H P, SCHAAB J, et al. Tuning the emission colour by manipulating terbium-terbium interactions: terbium doped aluminum nitride as an example system[J]. Journal of Applied Physics, 2013, 114(7): 073518. doi: 10.1063/1.4818815
    [12] GUERRA J A, MONTAÑEZ L, WINNACKER A, et al. Thermal activation and temperature dependent PL and CL of Tb doped amorphous AlN and SiN thin films[J]. Physica Status Solidi C, 2015, 12(8): 1183-1186. doi: 10.1002/pssc.201400226
    [13] WANG W, WANG X B, ZHANG P, et al. Near-white emission observed in Dy doped AlN[J]. RSC Advances, 2016, 6(60): 54801-54805. doi: 10.1039/C6RA03815H
    [14] 马海, 王晓丹, 李祥, 等. Eu3+, Dy3+共注入AlN薄膜结构和发光特性研究[J]. 光子学报,2020,49(8):0831001. doi: 10.3788/gzxb20204908.0831001

    MA H, WANG X D, LI X, et al. Structure and luminescence properties of Eu3+ and Dy3+ Co-implanted AlN films[J]. Acta Photonica Sinica, 2020, 49(8): 0831001. (in Chinese). doi: 10.3788/gzxb20204908.0831001
    [15] BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb: LiLuF4[J]. Optics Letters, 2014, 39(23): 6628-6631. doi: 10.1364/OL.39.006628
    [16] SUN Y, YU F, LIAO M S, et al. Visible emission and energy transfer in Tb3+/Dy3+ co-doped phosphate glasses[J]. Journal of the American Ceramic Society, 2020, 103(12): 6847-6859. doi: 10.1111/jace.17391
    [17] 贾珂, 曾佳汇, 韩甜甜, 等. Dy3+单掺、Tb3+单掺和Tb3+/Dy3+共掺碲锗钡酸盐玻璃的发光性能研究[J]. 激光与光电子学进展,2022,59(15):1516012.

    JIA K, ZENG J H, HAN T T, et al. Luminescent performance study on Dy3+-doped, Tb3+-doped and Tb3+/Dy3+ codoped TeO2-GeO2-BaO glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516012. (in Chinese).
    [18] RONG X, WANG X Q, CHEN G, et al. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy[J]. Superlattices and Microstructures, 2016, 93: 27-31. doi: 10.1016/j.spmi.2016.02.050
    [19] SUMATHI R R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds[J]. CrystEngComm, 2013, 15(12): 2232-2240. doi: 10.1039/C2CE26599K
    [20] KALLEL T, DAMMAK M, WANG J, et al. Raman characterization and stress analysis of AlN: Er3+ epilayers grown on sapphire and silicon substrates[J]. Materials Science and Engineering: B, 2014, 187: 46-52. doi: 10.1016/j.mseb.2014.04.003
    [21] RUTERANA P, CHAUVAT M P, LORENZ K. Mechanisms of damage formation during rare earth ion implantation in nitride semiconductors[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NH02. doi: 10.7567/JJAP.52.11NH02
    [22] WEI W W, PENG Y, WANG J B, et al. Temperature dependence of stress and optical properties in AlN films grown by MOCVD[J]. Nanomaterials, 2021, 11(3): 698. doi: 10.3390/nano11030698
    [23] WANG D, WANG X D, MA H, et al. Structure and cathodoluminescence properties of Dy3+ and Eu3+ co-doped AlN films[J]. Optical Materials, 2022, 128: 112366. doi: 10.1016/j.optmat.2022.112366
    [24] SARON K M A, HASHIM M R, FARRUKH M A. NH3-free growth of GaN nanostructure on n-Si (111) substrate using a conventional thermal evaporation technique[J]. Journal of Crystal Growth, 2012, 349(1): 19-23. doi: 10.1016/j.jcrysgro.2012.03.046
    [25] 李嘉豪, 韩军, 邢艳辉, 等. 不同Mo层厚度的AlN/Mo/Sc0.2Al0.8N复合结构上MOCVD外延GaN[J]. 发光学报,2023,44(6):1077-1084. doi: 10.37188/CJL.20220406

    LI J H, HAN J, XING Y H, et al. GaN grown on sputtered AlN/Mo/Sc0.2Al0.8N composite structure with different Mo thickness[J]. Chinese Journal of Luminescence, 2023, 44(6): 1077-1084. (in Chinese). doi: 10.37188/CJL.20220406
    [26] HSOUNA N, BOUZIDI C. White luminescence and energy transfer studies in Tb3+-Eu3+ co-doped phosphate glasses[J]. Solid State Sciences, 2022, 134: 107053. doi: 10.1016/j.solidstatesciences.2022.107053
    [27] WANG Q SH, LI J H, ZHANG W, et al. Synthesis, and photoluminescence and magnetic properties of Tb-doped AlN single-crystalline nanobelts[J]. Journal of Luminescence, 2021, 236: 118089. doi: 10.1016/j.jlumin.2021.118089
    [28] RODRIGUES J, FIALHO M, MAGALHAES S, et al. Luminescence properties of MOCVD grown Al0.2Ga0.8N layers implanted with Tb[J]. Journal of Luminescence, 2019, 210: 413-424. doi: 10.1016/j.jlumin.2019.02.060
    [29] 白海斌, 陈昕, 沙雪竹, 等. NaGd(MoO4)2: Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J]. 发光学报,2023,44(10):1770-1778. doi: 10.37188/CJL.20230165

    BAI H B, CHEN X, SHA X ZH, et al. Temperature- and concentration-dependent luminescence and fluorescence dynamic temperature sensing of NaGd(MoO4)2: Tb3+ phosphors[J]. Chinese Journal of Luminescence, 2023, 44(10): 1770-1778. (in Chinese). doi: 10.37188/CJL.20230165
    [30] CAO R P, CHEN C P, CHENG F R, et al. Synthesis and luminescence properties of Eu3+, Dy3+ co-doped Ca3Bi(PO4)3 single-phase phosphor[J]. Journal of Luminescence, 2023, 257: 119731. doi: 10.1016/j.jlumin.2023.119731
    [31] 方高阳, 王燕, 游振宇, 等. Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu)晶体的生长、发光性质及能量传递[J]. 发光学报,2022,43(11):1721-1732. doi: 10.37188/CJL.20220094

    FANG G Y, WANG Y, YOU ZH Y, et al. Crystal growth, spectral properties and energy transfer mechanisms of Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu) crystals[J]. Chinese Journal of Luminescence, 2022, 43(11): 1721-1732. (in Chinese). doi: 10.37188/CJL.20220094
    [32] LUO X, WANG X D, MENG H CH, et al. Structure and cathodoluminescence properties in Tb3+ and Eu3+ doped AlN films[J]. Physica Status Solidi (A), 2024, 221(4): 2300625. doi: 10.1002/pssa.202300625
    [33] VIJAYAKUMAR M, VISWANATHAN K, MARIMUTHU K. Structural and optical studies on Dy3+: Tb3+ co-doped zinc leadfluoro-borophosphate glasses for white light applications[J]. Journal of Alloys and Compounds, 2018, 745: 306-318. doi: 10.1016/j.jallcom.2018.02.211
    [34] JIAO Y H, WU X L, REN Q, et al. Photoluminescence and energy transfer of a color tunable phosphors: Sr3La (BO3)3: Ln3+ (Ln = Dy, Eu, Tb) for warm white light UV-excited WLEDs[J]. Optics & Laser Technology, 2019, 109: 470-479.
    [35] NASTASI M, MAYER J W. Ion Implantation and Synthesis of Materials [M]. Berlin, Heidelberg: Springer, 2006.
    [36] SU L M, LIU Y J, LI G H, et al. Multicolor emission leading by energy transfer between Dy3+ and Eu3+ in wolframite InNbTiO6[J]. Journal of Luminescence, 2020, 227: 117578. doi: 10.1016/j.jlumin.2020.117578
    [37] 李敏, 孙晓园, 范小暄, 等. Sr6Lu2Al4O15: Tb3+荧光粉的发光特性[J]. 发光学报,2023,44(11):1940-1949. doi: 10.37188/CJL.20230147

    LI M, SUN X Y, FAN X X, et al. Photoluminescence properties of Sr6Lu2Al4O15: Tb3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(11): 1940-1949. (in Chinese). doi: 10.37188/CJL.20230147
    [38] DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5): 836-850. doi: 10.1063/1.1699044
    [39] MILLER M P, WRIGHT J C. Multiphonon and energy transfer relaxation in charge compensated crystals[J]. The Journal of Chemical Physics, 1979, 71(1): 324-338. doi: 10.1063/1.438074
    [40] VIDYADHARAN V, MOHAN P R, JOSEPH C, et al. Luminescent characteristics of UV excited Sr0.5Ca0.5TiO3: Pr3+ reddish-orange phosphor[J]. Materials Chemistry and Physics, 2016, 170: 38-43. doi: 10.1016/j.matchemphys.2015.12.016
    [41] MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color Research & Application, 1992, 17(2): 142-144.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  43
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回