-
摘要:
通过离子注入方法,首次将Dy3+和Tb3+共掺入氮化铝(AlN)薄膜,并研究了其晶体结构、阴极荧光和能量传递机制。拉曼光谱(Raman)和X射线衍射(XRD)结果显示,在Tb3+剂量一定的情况下,Dy3+的注入会导致晶格内部压应力增大,随着Dy3+的持续注入,一部分点缺陷发生复合,内部部分压应力会得到释放。阴极荧光光谱(CL)显示,高剂量Tb3+注入下,随着Dy3+剂量的增加,Tb3+的发射强度与Dy3+的发射强度呈现出不同的变化趋势。进一步分析表明可能存在Tb3+的5D4→7F6至Dy3+的6H15/2→4F9/2的共振能量传递。通过研究发现在不同Tb3+和Dy3+注入剂量下,样品的发光颜色在黄绿色与橙黄色之间转变,色温在4042~5119K范围变化。由上述研究结果可知,通过改变Tb3+与Dy3+共注入的剂量比可以有效调控材料的发光色坐标与色温。
Abstract:For the first time, Tb3+ and Dy3+ co-doped AlN films were prepared using ion implantation, and their crystal structure, cathodoluminescence properties and energy transfer mechanism were investigated. Raman scattering and X-ray diffraction results indicate that ion implantation of Dy3+ has caused increased compressive stress within the internal lattice when the dosage of Tb3+ remains constant. Continuous implantation led to the recombination of some point defects, resulting in a partial release of internal compressive stress. Cathodoluminescence spectra demonstrated that with high-dose Tb3+ implantation, the emission intensities of Tb3+ and Dy3+ exhibited different trends with increasing Dy3+ dosage. We propose the existence of a resonance energy transfer from Tb3+ ions 5D4→7F6 to Dy3+ ions 6H15/2→4F9/2 in AlN films. Finally, we observe that under different implantation dose of Dy3+ ions to Tb3+ ions, the emission color of the sample shifts between yellow-green and orange-yellow, with color temperatures ranging from 4042 to 5119K. Adjusting the dose ratio of Dy3+ to Tb3+ enables effective control of chromaticity coordinates and color temperatures.
-
Key words:
- dysprosium ions /
- terbium ions /
- aluminum nitride /
- luminescent properties /
- energy transfer
-
图 3 不同剂量下,Tb3+与Dy3+注入AlN的CL光谱图。(a) S1~S3样品;(b) S4~S6样品。(c), (d) Tb3+发光峰(I493)和Dy3+发光峰(I484)积分强度变化趋势
Figure 3. Cathodoluminescence (CL) spectra of AlN with different dosages of Tb3+ and Dy3+ injected. (a) S1-S3 samples; (b) S4-S6 samples. (c), (d) The variation trend of integrated intensities of Tb3+ emission peak (I493) and Dy3+ emission peak (I484)
表 1 AlN: Tb3+/Dy3+样品中离子注入剂量
Table 1. Ion implantation dose in AlN: Tb3+/Dy3+ samples
Sample Tb3+(at/cm2) Dy3+(at/cm2) S1 5×1014 1×1014 S2 5×1014 5×1014 S3 5×1014 1×1015 S4 1×1015 1×1014 S5 1×1015 5×1014 S6 1×1015 1×1015 表 2 平均注入剂量Cp,临界距离Rc计算结果
Table 2. Calculation results of average injection dose Cp and critical distance Rc
Sample Tb3+ /
(at· cm−2)Dy3+/
(at· cm−2)Cp/
(%, atom fraction)Rc(nm) S1 5×1014 1×1014 0.4219 2.11448 S2 5×1014 5×1014 0.7012 1.78531 S3 5×1014 1×1015 1.0480 1.56149 S4 1×1015 1×1014 0.7708 1.72986 S5 1×1015 5×1014 1.0480 1.56149 S6 1×1015 1×1015 1.3927 1.42028 表 3 不同剂量的Tb3+和Dy3+注入样品时的色度坐标与色温
Table 3. Luminescent chromaticity coordinates and color temperature of AlN: Tb3+/Dy3+ with different doses of Tb3+and Dy3+ions
Sample Tb3+/(at·cm−2) Dy3+/(at·cm−2) CIE co-ordinates CCT/K x y S1 5×1014 1×1014 0.3446 0.3939 5119.6625 S2 5×1014 5×1014 0.3775 0.3701 4042.5739 S3 5×1014 1×1015 0.3506 0.3566 4817.7583 S4 1×1015 1×1014 0.3560 0.4158 4845.6823 S5 1×1015 5×1014 0.3685 0.3714 4310.2723 S6 1×1015 1×1015 0.3422 0.3506 5110.9489 -
[1] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302. doi: 10.1016/j.apsusc.2020.146825TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. doi: 10.1016/j.apsusc.2020.146825 [2] CARDOSO J P S, CORREIA M R, VERMEERSCH R, et al. Europium-implanted AlN nanowires for red light-emitting diodes[J]. ACS Applied Nano Materials, 2022, 5(1): 972-984. doi: 10.1021/acsanm.1c03654 [3] 丁寒. 基于NaYF4: Yb, Er上转换发光纳米材料的掌印和足迹增强显现[J]. 分析化学,2023,51(11):1774-1782. doi: 10.1063/1.4978855DING H. Enhanced Development of Palmprints and FootprintsBased on NaYF4: Yb, Er Upconversion Luminescent Nanomaterials[J]. Chinese Journal of Analytical Chemistry, 2023, 51(11): 1774-1782. doi: 10.1063/1.4978855 [4] 郑天程, 李 月, 刘钰铃, 等. Cs2ZnCl4∶Ce3+, Mn2+的合成及其多模发光性能[J]. 应用化学,2023,40(12):1613-1622.ZHENG Tian-Cheng, LI Yue, LIU Yu-Ling, et al. Synthesis and Multi-Mode Luminescence Properties of Cs2ZnCl4∶Ce3+,Mn2+[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1613-1622. [5] LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043 [6] 王俊荣,孙倩倩,朱国庆,等. 稀土掺杂正交发光纳米晶:从基础到前沿应用[J]. 应用化学,2023,40(11):1475‐1493.WANG Jun-Rong,SUN Qian-Qian,ZHU Guo-Qing, et al. Rare-Earth-Doped Orthogonal Luminescent Nanocrystals:From Fundamentals to Frontier Applications[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1475‐1493. [7] 王晓莹,涂昊宇,李琪,等. 基于石墨烯掺杂的CuMOF/Cu(OH)2纳米棒阵列自支撑电极的制备及用于葡萄糖检测[J]. 分析化学,2023,51(9):1441-1451.WANG X Y, TU H Y, LI Q, et al. Efficient Electrochemical Sensor for Glucose DetectionBased on Self-Supporting Electrode of Graphene DopedCuMOF/Cu(OH)2 Nanorod Arrays[J]. Chinese Journal of Applied Chemistry, 2023, 51(9): 1441-1451. [8] DING SH J, LI H Y, ZHANG Q L, et al. The investigations of Dy: YAG and Dy, Tb: YAG as potentially efficient GaN blue LD pumped solid state yellow laser crystals[J]. Journal of Luminescence, 2021, 237: 118174. doi: 10.1016/j.jlumin.2021.118174 [9] 胡萍, 刘晓萌, 田颖, 等. 直接泵浦中红外Dy: PbGa2S4激光器研究进展[J]. 发光学报,2022,43(12):1905-1914. doi: 10.37188/CJL.20220203HU P, LIU X M, TIAN Y, et al. Research progress of directly pumped mid-infrared Dy: PbGa2S4 lasers[J]. Chinese Journal of Luminescence, 2022, 43(12): 1905-1914. (in Chinese). doi: 10.37188/CJL.20220203 [10] 龚宏波, 胡伟晔, 黄秋婷, 等. 基于表面增强拉曼光谱技术对负电性分子的高灵敏定性分析[J]. 分析化学,2023,51(7):1213-1221.GONG H B, HU W Y, HUANG Q T, et al. Highly Sensitive Qualitative Analysis of ElectronegativeMolecules Based on Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Applied Chemistry, 2023, 51(7): 1213-1221. [11] BENZ F, STRUNK H P, SCHAAB J, et al. Tuning the emission colour by manipulating terbium-terbium interactions: terbium doped aluminum nitride as an example system[J]. Journal of Applied Physics, 2013, 114(7): 073518. doi: 10.1063/1.4818815 [12] GUERRA J A, MONTAÑEZ L, WINNACKER A, et al. Thermal activation and temperature dependent PL and CL of Tb doped amorphous AlN and SiN thin films[J]. Physica Status Solidi C, 2015, 12(8): 1183-1186. doi: 10.1002/pssc.201400226 [13] WANG W, WANG X B, ZHANG P, et al. Near-white emission observed in Dy doped AlN[J]. RSC Advances, 2016, 6(60): 54801-54805. doi: 10.1039/C6RA03815H [14] 马海, 王晓丹, 李祥, 等. Eu3+, Dy3+共注入AlN薄膜结构和发光特性研究[J]. 光子学报,2020,49(8):0831001. doi: 10.3788/gzxb20204908.0831001MA H, WANG X D, LI X, et al. Structure and luminescence properties of Eu3+ and Dy3+ Co-implanted AlN films[J]. Acta Photonica Sinica, 2020, 49(8): 0831001. (in Chinese). doi: 10.3788/gzxb20204908.0831001 [15] BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb: LiLuF4[J]. Optics Letters, 2014, 39(23): 6628-6631. doi: 10.1364/OL.39.006628 [16] SUN Y, YU F, LIAO M S, et al. Visible emission and energy transfer in Tb3+/Dy3+ co-doped phosphate glasses[J]. Journal of the American Ceramic Society, 2020, 103(12): 6847-6859. doi: 10.1111/jace.17391 [17] 贾珂, 曾佳汇, 韩甜甜, 等. Dy3+单掺、Tb3+单掺和Tb3+/Dy3+共掺碲锗钡酸盐玻璃的发光性能研究[J]. 激光与光电子学进展,2022,59(15):1516012.JIA K, ZENG J H, HAN T T, et al. Luminescent performance study on Dy3+-doped, Tb3+-doped and Tb3+/Dy3+ codoped TeO2-GeO2-BaO glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516012. (in Chinese). [18] RONG X, WANG X Q, CHEN G, et al. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy[J]. Superlattices and Microstructures, 2016, 93: 27-31. doi: 10.1016/j.spmi.2016.02.050 [19] SUMATHI R R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds[J]. CrystEngComm, 2013, 15(12): 2232-2240. doi: 10.1039/C2CE26599K [20] KALLEL T, DAMMAK M, WANG J, et al. Raman characterization and stress analysis of AlN: Er3+ epilayers grown on sapphire and silicon substrates[J]. Materials Science and Engineering: B, 2014, 187: 46-52. doi: 10.1016/j.mseb.2014.04.003 [21] RUTERANA P, CHAUVAT M P, LORENZ K. Mechanisms of damage formation during rare earth ion implantation in nitride semiconductors[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NH02. doi: 10.7567/JJAP.52.11NH02 [22] WEI W W, PENG Y, WANG J B, et al. Temperature dependence of stress and optical properties in AlN films grown by MOCVD[J]. Nanomaterials, 2021, 11(3): 698. doi: 10.3390/nano11030698 [23] WANG D, WANG X D, MA H, et al. Structure and cathodoluminescence properties of Dy3+ and Eu3+ co-doped AlN films[J]. Optical Materials, 2022, 128: 112366. doi: 10.1016/j.optmat.2022.112366 [24] SARON K M A, HASHIM M R, FARRUKH M A. NH3-free growth of GaN nanostructure on n-Si (111) substrate using a conventional thermal evaporation technique[J]. Journal of Crystal Growth, 2012, 349(1): 19-23. doi: 10.1016/j.jcrysgro.2012.03.046 [25] 李嘉豪, 韩军, 邢艳辉, 等. 不同Mo层厚度的AlN/Mo/Sc0.2Al0.8N复合结构上MOCVD外延GaN[J]. 发光学报,2023,44(6):1077-1084. doi: 10.37188/CJL.20220406LI J H, HAN J, XING Y H, et al. GaN grown on sputtered AlN/Mo/Sc0.2Al0.8N composite structure with different Mo thickness[J]. Chinese Journal of Luminescence, 2023, 44(6): 1077-1084. (in Chinese). doi: 10.37188/CJL.20220406 [26] HSOUNA N, BOUZIDI C. White luminescence and energy transfer studies in Tb3+-Eu3+ co-doped phosphate glasses[J]. Solid State Sciences, 2022, 134: 107053. doi: 10.1016/j.solidstatesciences.2022.107053 [27] WANG Q SH, LI J H, ZHANG W, et al. Synthesis, and photoluminescence and magnetic properties of Tb-doped AlN single-crystalline nanobelts[J]. Journal of Luminescence, 2021, 236: 118089. doi: 10.1016/j.jlumin.2021.118089 [28] RODRIGUES J, FIALHO M, MAGALHAES S, et al. Luminescence properties of MOCVD grown Al0.2Ga0.8N layers implanted with Tb[J]. Journal of Luminescence, 2019, 210: 413-424. doi: 10.1016/j.jlumin.2019.02.060 [29] 白海斌, 陈昕, 沙雪竹, 等. NaGd(MoO4)2: Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J]. 发光学报,2023,44(10):1770-1778. doi: 10.37188/CJL.20230165BAI H B, CHEN X, SHA X ZH, et al. Temperature- and concentration-dependent luminescence and fluorescence dynamic temperature sensing of NaGd(MoO4)2: Tb3+ phosphors[J]. Chinese Journal of Luminescence, 2023, 44(10): 1770-1778. (in Chinese). doi: 10.37188/CJL.20230165 [30] CAO R P, CHEN C P, CHENG F R, et al. Synthesis and luminescence properties of Eu3+, Dy3+ co-doped Ca3Bi(PO4)3 single-phase phosphor[J]. Journal of Luminescence, 2023, 257: 119731. doi: 10.1016/j.jlumin.2023.119731 [31] 方高阳, 王燕, 游振宇, 等. Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu)晶体的生长、发光性质及能量传递[J]. 发光学报,2022,43(11):1721-1732. doi: 10.37188/CJL.20220094FANG G Y, WANG Y, YOU ZH Y, et al. Crystal growth, spectral properties and energy transfer mechanisms of Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu) crystals[J]. Chinese Journal of Luminescence, 2022, 43(11): 1721-1732. (in Chinese). doi: 10.37188/CJL.20220094 [32] LUO X, WANG X D, MENG H CH, et al. Structure and cathodoluminescence properties in Tb3+ and Eu3+ doped AlN films[J]. Physica Status Solidi (A), 2024, 221(4): 2300625. doi: 10.1002/pssa.202300625 [33] VIJAYAKUMAR M, VISWANATHAN K, MARIMUTHU K. Structural and optical studies on Dy3+: Tb3+ co-doped zinc leadfluoro-borophosphate glasses for white light applications[J]. Journal of Alloys and Compounds, 2018, 745: 306-318. doi: 10.1016/j.jallcom.2018.02.211 [34] JIAO Y H, WU X L, REN Q, et al. Photoluminescence and energy transfer of a color tunable phosphors: Sr3La (BO3)3: Ln3+ (Ln = Dy, Eu, Tb) for warm white light UV-excited WLEDs[J]. Optics & Laser Technology, 2019, 109: 470-479. [35] NASTASI M, MAYER J W. Ion Implantation and Synthesis of Materials [M]. Berlin, Heidelberg: Springer, 2006. [36] SU L M, LIU Y J, LI G H, et al. Multicolor emission leading by energy transfer between Dy3+ and Eu3+ in wolframite InNbTiO6[J]. Journal of Luminescence, 2020, 227: 117578. doi: 10.1016/j.jlumin.2020.117578 [37] 李敏, 孙晓园, 范小暄, 等. Sr6Lu2Al4O15: Tb3+荧光粉的发光特性[J]. 发光学报,2023,44(11):1940-1949. doi: 10.37188/CJL.20230147LI M, SUN X Y, FAN X X, et al. Photoluminescence properties of Sr6Lu2Al4O15: Tb3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(11): 1940-1949. (in Chinese). doi: 10.37188/CJL.20230147 [38] DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5): 836-850. doi: 10.1063/1.1699044 [39] MILLER M P, WRIGHT J C. Multiphonon and energy transfer relaxation in charge compensated crystals[J]. The Journal of Chemical Physics, 1979, 71(1): 324-338. doi: 10.1063/1.438074 [40] VIDYADHARAN V, MOHAN P R, JOSEPH C, et al. Luminescent characteristics of UV excited Sr0.5Ca0.5TiO3: Pr3+ reddish-orange phosphor[J]. Materials Chemistry and Physics, 2016, 170: 38-43. doi: 10.1016/j.matchemphys.2015.12.016 [41] MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color Research & Application, 1992, 17(2): 142-144.