留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦型中频面形误差对光学传递函数的影响

陈建军 王琳琳 霍立民 匡翠方 毛磊 郑驰 尹禄

陈建军, 王琳琳, 霍立民, 匡翠方, 毛磊, 郑驰, 尹禄. 正弦型中频面形误差对光学传递函数的影响[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0229
引用本文: 陈建军, 王琳琳, 霍立民, 匡翠方, 毛磊, 郑驰, 尹禄. 正弦型中频面形误差对光学传递函数的影响[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0229
CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics. doi: 10.37188/CO.2023-0229
Citation: CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics. doi: 10.37188/CO.2023-0229

正弦型中频面形误差对光学传递函数的影响

doi: 10.37188/CO.2023-0229
基金项目: 山东省自然科学基金(No. ZR2021QF113,No.ZR2021MF081);山东省高等学校优秀青年创新团队(No. 2022KJ162);国家自然科学基金(No. 62305320)
详细信息
    作者简介:

    陈建军(1992—),男,山东潍坊人,博士,讲师,硕士生导师,2014年于哈尔滨工业大学获得学士学位,2019年于中国科学院大学(长春光机所)获得博士学位,现为青岛理工大学通信工程教研室主任,主要从事成像光谱仪器研发、光学系统设计、光谱数据处理等方面的研究。E-mail:chenjianjunplus@163.com

    尹 禄(1988—),男,山东济南人,博士,讲师,硕士生导师,2012年于哈尔滨工业大学获得学士学位,2017年于中国科学院大学(长春光机所)获得博士学位,现为中国计量大学光学与电子科技学院专任教师,主要从事光谱仪器开发、光谱图像处理相关方面的研究。E-mail:yinlu890622@163.com

  • 中图分类号: TH741

Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function

Funds: Natural Science Foundation of Shandong Province (No. ZR2021QF113, No. ZR2021MF081); Outstanding Youth Innovation Team in Shandong Higher Education Institutions (No. 2022KJ162); National Natural Science Foundation of China (No. 62305320)
More Information
  • 摘要:
    目的 

    中频面形误差(MSFSE)会导致光学系统发生小角度散射,影响系统性能。为了在光学设计和光学加工中制定合理的中频面形误差公差,就中频面形误差对光学系统光学传递函数(MTF)的影响进行了量化研究。在衍射受限条件下,推导出正弦型中频面形误差对光学系统MTF的影响的表达式并对其进行分析,然后通过光学设计软件仿真验证理论推导结果。

    方法 

    假设光学系统光瞳上带有正弦型中频面形误差,对光瞳函数进行傅里叶变换,然后平方得到点扩散函数(PSF),再对PSF进行傅里叶变换得到光学系统的光学传递函数(OTF),对OTF取模,即可得到中频误差影响下的MTF的表达式。该式与衍射受限条件下无中频误差的光学系统MTF对比,得到中频误差对光学系统MTF的量化影响。

    结果 

    理论计算结果表明:正弦型中频误差使光学系统的MTF在不同空间频率处产生不同的损失,损失值随空间频率周期性变化;峰谷值(PV)为0.030 μm、0.095 μm、0.159 μm和0.223 μm的中频面形误差,造成光学系统MTF的最大损失比例分别为0.89%、8.80%、23.48%和43.31%;随着中频误差PV的增加,MTF的损失值非线性快速增加。软件仿真结果与理论计算结果吻合。

    结论 

    研究结果能够为光学设计与加工的技术人员,确定光学成像系统中光学元件的中频面形误差的公差范围提供理论指导。

     

  • 图 1  中频面形误差检测结果图

    Figure 1.  Detection results of MSFSE

    图 2  光瞳函数、点扩散函数和光学传递函数的关系图

    Figure 2.  Relationship diagram of pupil function, point spread function, and optical transfer function

    图 3  光学元件的中频误差对系统MTF的影响

    Figure 3.  The influence of mid-spatial frequency errors of optical components on system MTF

    图 4  接近衍射极限的光学成像系统

    Figure 4.  Optical imaging system near diffraction-limited

    图 5  正弦型中频相位误差的3D示意图

    Figure 5.  3D schematic diagram of sinusoidal mid-spatial frequency phase errors

    图 6  中频误差为0.030 μm时双高斯光学系统的MTF

    Figure 6.  MTF curve of a double Gaussian optical system with a 0.030 μm MSFSE

    图 7  中频误差为0.095 μm时双高斯光学系统的MTF

    Figure 7.  MTF of a double Gaussian optical system with a 0.095 μm MSFSE

    图 8  中频误差为0.159 μm时双高斯光学系统的MTF

    Figure 8.  MTF of a double Gaussian optical system with a 0.159 μm MSFSE

    图 9  中频误差为0.223 μm时双高斯光学系统的MTF

    Figure 9.  MTF curve of a double Gaussian optical system with a 0.223 μm MSFSE

    表  1  仿真结果与理论计算结果的对比

    Table  1.   Comparison between simulation results and calculation results

    MSFSE PV/μm Calculation
    result
    Simulation
    result
    Percentage error
    0.030 0.89% 0.86% 3.37%
    0.095 8.80% 8.52% 3.18%
    0.159 23.48% 22.16% 5.62%
    0.223 43.31% 40.84% 5.70%
    下载: 导出CSV
  • [1] 张云进, 项华中, 王亚琼, 等. 渐进多焦点自由曲面镜片优化重构[J]. 光学 精密工程,2023,31(6):813-821. doi: 10.37188/OPE.20233106.0813

    ZHANG Y J, XIANG H ZH, WANG Y Q, et al. Optimization and reconstruction of progressive addition free-form surface lens[J]. Optics and Precision Engineering, 2023, 31(6): 813-821. (in Chinese). doi: 10.37188/OPE.20233106.0813
    [2] 徐乐, 张春雷, 代雷, 等. 高精度非回转对称非球面加工方法研究[J]. 中国光学,2016,9(3):364-370. doi: 10.3788/co.20160903.0364

    XU L, ZHANG CH L, DAI L, et al. Research on manufacturing method of non-rotationally symmetrical aspheric surface with high accuracy[J]. Chinese Optics, 2016, 9(3): 364-370. (in Chinese). doi: 10.3788/co.20160903.0364
    [3] 田杰文, 叶新, 方伟. 基于自由曲面的辐射定标光源设计[J]. 中国光学,2023,16(1):127-135. doi: 10.37188/CO.2022-0021

    TIAN J W, YE X, FANG W. Design of a radiometric calibration light source based on a freeform reflector[J]. Chinese Optics, 2023, 16(1): 127-135. (in Chinese). doi: 10.37188/CO.2022-0021
    [4] DU CH Y, DAI Y F, GUAN CH L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753. doi: 10.1364/OE.417537
    [5] DENG Y H, HOU X, LI B CH, et al. Review on mid-spatial frequency error suppression in optical components manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11-12): 4827-4847. doi: 10.1007/s00170-023-11408-y
    [6] 安其昌, 张景旭, 杨飞, 等. 基于结构函数的大口径望远镜中频误差分配研究[J]. 光学 精密工程,2017,25(2):433-440. doi: 10.3788/OPE.20172502.0433

    AN Q CH, ZHANG J X, YANG F, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and Precision Engineering, 2017, 25(2): 433-440. (in Chinese). doi: 10.3788/OPE.20172502.0433
    [7] HONEYCUTT A, SCHMITZ T L. Surface location error and surface roughness for period-n milling bifurcations[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061010. doi: 10.1115/1.4035371
    [8] 赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477

    ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
    [9] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese). doi: 10.37188/CO.2021-0143
    [10] AIKENS D M. Origin and evolution of the optics specifications for the National Ignition Facility[J]. Proceedings of SPIE, 1995, 2536: 2-12. doi: 10.1117/12.218410
    [11] 曾雪锋. 光学表面频段误差对成像质量的影响研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.

    ZENG X F. Impact on image performance of surface spatial frequency[D]. Changchun: Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [12] HARVEY J E. Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles[J]. Optical Engineering, 2012, 51(1): 013402. doi: 10.1117/1.OE.51.1.013402
    [13] LI L X, LI X CH, CHENG Q, et al. Optimized strategy to restrain the mid-spatial-frequency surface error in computer-controlled optical surfacing[J]. Results in Physics, 2020, 19: 103356. doi: 10.1016/j.rinp.2020.103356
    [14] 曾雪锋, 张学军. 光学制造中频残差对光学调制传递函数的影响[J]. 激光与光电子学进展,2015,52(7):072202.

    ZENG X F, ZHANG X J. Impact of mid-spatial frequency errors in optical manufacturing on modulation transfer function[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072202. (in Chinese).
    [15] XIE CH, REN J L, CHEN SH Y. Sub-aperture stitching method to measure aspherical mirror in phase retrieval[J]. Optical and Quantum Electronics, 2017, 49(11): 353. doi: 10.1007/s11082-017-1189-y
    [16] GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill Book Co., 1968. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认) .

    GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill Book Co., 1968. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认).
    [17] TAMKIN J M, DALLAS W J, MILSTER T D. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors[J]. Applied Optics, 2010, 49(25): 4814-4824. doi: 10.1364/AO.49.004814
    [18] TAMKIN J M, MILSTER T D, DALLAS W. Theory of modulation transfer function artifacts due to mid-spatial-frequency errors and its application to optical tolerancing[J]. Applied Optics, 2010, 49(25): 4825-4835. doi: 10.1364/AO.49.004825
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  50
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-03-15

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!