留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦型中频面形误差对光学传递函数的影响

陈建军 王琳琳 霍立民 匡翠方 毛磊 郑驰 尹禄

陈建军, 王琳琳, 霍立民, 匡翠方, 毛磊, 郑驰, 尹禄. 正弦型中频面形误差对光学传递函数的影响[J]. 中国光学(中英文), 2024, 17(4): 725-732. doi: 10.37188/CO.2023-0229
引用本文: 陈建军, 王琳琳, 霍立民, 匡翠方, 毛磊, 郑驰, 尹禄. 正弦型中频面形误差对光学传递函数的影响[J]. 中国光学(中英文), 2024, 17(4): 725-732. doi: 10.37188/CO.2023-0229
CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics, 2024, 17(4): 725-732. doi: 10.37188/CO.2023-0229
Citation: CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics, 2024, 17(4): 725-732. doi: 10.37188/CO.2023-0229

正弦型中频面形误差对光学传递函数的影响

cstr: 32171.14.CO.2023-0229
基金项目: 国家自然科学基金(No. 62305320);山东省自然科学基金(No. ZR2021QF113,No.ZR2021MF081);山东省高等学校优秀青年创新团队(No. 2022KJ162)
详细信息
    作者简介:

    陈建军(1992—),男,山东潍坊人,博士,讲师,硕士生导师,2014年于哈尔滨工业大学获得学士学位,2019年于中国科学院大学(长春光机所)获得博士学位,现为青岛理工大学通信工程教研室主任,主要从事成像光谱仪器研发、光学系统设计、光谱数据处理等方面的研究。E-mail:chenjianjunplus@163.com

    尹 禄(1988—),男,山东济南人,博士,讲师,硕士生导师,2012年于哈尔滨工业大学获得学士学位,2017年于中国科学院大学(长春光机所)获得博士学位,现为中国计量大学光学与电子科技学院专任教师,主要从事光谱仪器开发、光谱图像处理相关方面的研究。E-mail:yinlu890622@163.com

  • 中图分类号: TH741

Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function

Funds: Supported by National Natural Science Foundation of China (No. 62305320); Natural Science Foundation of Shandong Province (No. ZR2021QF113, No. ZR2021MF081); Outstanding Youth Innovation Team in Shandong Higher Education Institutions (No. 2022KJ162)
More Information
  • 摘要:

    中频面形误差(MSFSE)会导致光学系统发生小角度散射,影响系统性能。为了在光学设计和光学加工中制定合理的中频面形误差公差,就中频面形误差对光学系统调制传递函数(MTF)的影响进行了量化研究。在衍射受限条件下,推导出正弦型中频面形误差对光学系统MTF的影响的表达式并对其进行分析,然后通过光学设计软件仿真验证理论推导结果。假设光学系统光瞳上带有正弦型中频面形误差,对光瞳函数进行傅立叶变换,然后平方得到点扩散函数(PSF),再对PSF进行傅立叶变换得到光学系统的光学传递函数(OTF),对OTF取模,即可得到中频误差影响下的MTF表达式。将该式与衍射受限条件下无中频误差的光学系统MTF进行对比,得到中频误差对光学系统MTF的量化影响。理论计算结果表明:正弦型中频误差会使光学系统的MTF在不同空间频率处产生不同的损失,损失值随空间频率呈周期性变化;峰谷值(PV)分别为0.030 μm、0.095 μm、0.159 μm和0.223 μm的中频面形误差,导致的光学系统MTF的最大损失比例分别为0.89%、8.80%、23.48%和43.31%;随着中频误差PV的增加,MTF的损失值呈非线性快速增加。软件仿真结果与理论计算结果吻合。

     

  • 图 1  中频面形误差检测结果图

    Figure 1.  Detection results of MSFSE

    图 2  光瞳函数、点扩散函数和光学传递函数的关系图

    Figure 2.  Relationship diagram of pupil function, point spread function, and optical transfer function

    图 3  光学元件的中频误差对系统MTF的影响

    Figure 3.  The influence of mid-spatial frequency errors of optical components on system MTF

    图 4  接近衍射极限的光学成像系统

    Figure 4.  Optical imaging system approaching diffraction-limit

    图 5  正弦型中频相位误差的3D示意图

    Figure 5.  3D schematic diagram of sinusoidal mid-spatial frequency phase errors

    图 6  中频误差为0.030 μm时双高斯光学系统的MTF

    Figure 6.  MTF of a double Gaussian optical system with a 0.030 μm MSFSE

    图 7  中频误差为0.095 μm时双高斯光学系统的MTF

    Figure 7.  MTF of a double Gaussian optical system with a 0.095 μm MSFSE

    图 8  中频误差为0.159 μm时双高斯光学系统的MTF

    Figure 8.  MTF of a double Gaussian optical system with a 0.159 μm MSFSE

    图 9  中频误差为0.223 μm时双高斯光学系统的MTF

    Figure 9.  MTF of a double Gaussian optical system with a 0.223 μm MSFSE

    表  1  仿真结果与理论计算结果对比

    Table  1.   Comparison between simulation results and calculation results

    MSFSE PV/μm Calculation
    result
    Simulation
    result
    Percentage error
    0.030 0.89% 0.86% 3.37%
    0.095 8.80% 8.52% 3.18%
    0.159 23.48% 22.16% 5.62%
    0.223 43.31% 40.84% 5.70%
    下载: 导出CSV
  • [1] 张云进, 项华中, 王亚琼, 等. 渐进多焦点自由曲面镜片优化重构[J]. 光学 精密工程,2023,31(6):813-821. doi: 10.37188/OPE.20233106.0813

    ZHANG Y J, XIANG H ZH, WANG Y Q, et al. Optimization and reconstruction of progressive addition free-form surface lens[J]. Optics and Precision Engineering, 2023, 31(6): 813-821. (in Chinese). doi: 10.37188/OPE.20233106.0813
    [2] 徐乐, 张春雷, 代雷, 等. 高精度非回转对称非球面加工方法研究[J]. 中国光学,2016,9(3):364-370. doi: 10.3788/co.20160903.0364

    XU L, ZHANG CH L, DAI L, et al. Research on manufacturing method of non-rotationally symmetrical aspheric surface with high accuracy[J]. Chinese Optics, 2016, 9(3): 364-370. (in Chinese). doi: 10.3788/co.20160903.0364
    [3] 田杰文, 叶新, 方伟. 基于自由曲面的辐射定标光源设计[J]. 中国光学(中英文),2023,16(1):127-135. doi: 10.37188/CO.2022-0021

    TIAN J W, YE X, FANG W. Design of a radiometric calibration light source based on a freeform reflector[J]. Chinese Optics, 2023, 16(1): 127-135. (in Chinese). doi: 10.37188/CO.2022-0021
    [4] DU CH Y, DAI Y F, GUAN CH L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753. doi: 10.1364/OE.417537
    [5] DENG Y H, HOU X, LI B CH, et al. Review on mid-spatial frequency error suppression in optical components manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11-12): 4827-4847. doi: 10.1007/s00170-023-11408-y
    [6] 安其昌, 张景旭, 杨飞, 等. 基于结构函数的大口径望远镜中频误差分配研究[J]. 光学 精密工程,2017,25(2):433-440. doi: 10.3788/OPE.20172502.0433

    AN Q CH, ZHANG J X, YANG F, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and Precision Engineering, 2017, 25(2): 433-440. (in Chinese). doi: 10.3788/OPE.20172502.0433
    [7] HONEYCUTT A, SCHMITZ T L. Surface location error and surface roughness for period-n milling bifurcations[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061010. doi: 10.1115/1.4035371
    [8] 赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477

    ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
    [9] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese). doi: 10.37188/CO.2021-0143
    [10] AIKENS D M. Origin and evolution of the optics specifications for the National Ignition Facility[J]. Proceedings of SPIE, 1995, 2536: 2-12. doi: 10.1117/12.218410
    [11] 曾雪锋. 光学表面频段误差对成像质量的影响研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.

    ZENG X F. Impact on image performance of surface spatial frequency[D]. Changchun: Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [12] HARVEY J E. Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles[J]. Optical Engineering, 2012, 51(1): 013402. doi: 10.1117/1.OE.51.1.013402
    [13] LI L X, LI X CH, CHENG Q, et al. Optimized strategy to restrain the mid-spatial-frequency surface error in computer-controlled optical surfacing[J]. Results in Physics, 2020, 19: 103356. doi: 10.1016/j.rinp.2020.103356
    [14] 曾雪锋, 张学军. 光学制造中频残差对光学调制传递函数的影响[J]. 激光与光电子学进展,2015,52(7):072202.

    ZENG X F, ZHANG X J. Impact of mid-spatial frequency errors in optical manufacturing on modulation transfer function[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072202. (in Chinese).
    [15] XIE CH, REN J L, CHEN SH Y. Sub-aperture stitching method to measure aspherical mirror in phase retrieval[J]. Optical and Quantum Electronics, 2017, 49(11): 353. doi: 10.1007/s11082-017-1189-y
    [16] GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill Book Co., 1968.
    [17] TAMKIN J M, DALLAS W J, MILSTER T D. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors[J]. Applied Optics, 2010, 49(25): 4814-4824. doi: 10.1364/AO.49.004814
    [18] TAMKIN J M, MILSTER T D, DALLAS W. Theory of modulation transfer function artifacts due to mid-spatial-frequency errors and its application to optical tolerancing[J]. Applied Optics, 2010, 49(25): 4825-4835. doi: 10.1364/AO.49.004825
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  186
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-01-17
  • 网络出版日期:  2024-03-15

目录

    /

    返回文章
    返回