留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法

赵航宇 王道斌 张硕 黄全盛 温坤 李广富 元丽华

赵航宇, 王道斌, 张硕, 黄全盛, 温坤, 李广富, 元丽华. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文), 2024, 17(4): 950-958. doi: 10.37188/CO.2023-0230
引用本文: 赵航宇, 王道斌, 张硕, 黄全盛, 温坤, 李广富, 元丽华. 基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法[J]. 中国光学(中英文), 2024, 17(4): 950-958. doi: 10.37188/CO.2023-0230
ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO-OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics, 2024, 17(4): 950-958. doi: 10.37188/CO.2023-0230
Citation: ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO-OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics, 2024, 17(4): 950-958. doi: 10.37188/CO.2023-0230

基于实虚交替导频的CO-OFDM-OQAM通信系统激光器相位噪声抑制方法

cstr: 32171.14.CO.2023-0230
基金项目: 国家自然科学基金(No. 62141505,No. 61367007);甘肃省自然科学基金(No. 20JR10RA154)
详细信息
    作者简介:

    王道斌(1976—),男,甘肃兰州人,博士,副教授,硕士生导师,2012年于北京邮电大学信息光子学与光通信国家重点实验室获得工学博士学位,主要从事光纤通信和微纳光子学方面的研究。E-mail:cougarlz@lut.edu.cn

  • 中图分类号: TN913.7

Laser phase noise suppression method for a CO-OFDM-OQAM communication system with real-imaginary-alternate pilots

Funds: Supported by National Natural Science Foundation of China (No. 62141505, No. 61367007); Natural Science Foundation of Gansu Province (No. 20JR10RA154)
  • 摘要:

    针对偏移正交幅度调制的相干光正交频分复用(CO-OFDM-OQAM)通信系统,本文提出了一种基于实虚交替导频的相位噪声抑制算法。该算法利用激光器相位噪声的性质和固有虚部干扰(IMI)系数的对称性规律设计全新的实虚交替导频,结合线性拟合,能够准确估计每个频域符号的公共相位误差(CPE)。由于是在频域进行补偿,与时域相位噪声抑制算法相比,计算复杂度大幅下降。搭建了有效速率为65 GBits/s的偏振复用CO-OFDM-OQAM系统的数值仿真平台,研究了不同激光器线宽和子载波个数下系统的传输性能,考察了所提方法对相位噪声的抑制效果。获得的结果证实:OSNR固定为25 dB,子载波总数分别为256、512和1024时,误码率达到FEC极限时所需要的线宽分别为801.1、349和138.4 kHz。对于使用16-QAM调制格式、子载波个数为256或512的系统,能较好补偿激光器的相位噪声,而且不会影响功率峰均比。

     

  • 图 1  OFDM-OQAM系统中信号受激光器线宽的影响。(a)线宽为0;(b)线宽为0.1 MHz;(c)线宽为0.2 MHz;(d)线宽为0.3 MHz;(e)线宽为0.5 MHz;(f)线宽为1 MHz

    Figure 1.  The effect of the laser linewidth on the signal in the OFDM-OQAM system. The line width is (a) 0; (b) 0.1 MHz; (c) 0.2 MHz; (d) 0.3 MHz; (e) 0.5 MHz; (f) 1 MHz

    图 2  本文提出的相位噪声补偿方法导频结构图

    Figure 2.  Pilot structure diagram of the proposed phase noise compensation method

    图 3  在导频中载入的AM信号

    Figure 3.  The AM signal loaded in the pilot

    图 4  本文所提相位噪声补偿算法流程图

    Figure 4.  Flowchart of the proposed phase noise compensation algorithm

    图 5  PDM CO-OFDM-OQAM系统原理示意图,插图显示了它的光谱和补偿流程

    Figure 5.  Schematic diagram of PDM CO-OFDM-OQAM system, with insets showing its optical spectra and compensation process

    图 6  子载波数为256,光背靠背时,不同激光器线宽的误码率性能

    Figure 6.  The bit error rate performance of different laser linewidths with the subcarrier number 256 when light is back-to-back

    图 8  OSNR为25 dB,光背靠背时,本方法在不同子载波数目下的误码率性能

    Figure 8.  The bit error rate performance for proposed method under different subcarrier numbers with OSNR 25 dB when light is back-to-back

    图 7  子载波数为512,光背靠背时,不同激光器线宽的误码率性能

    Figure 7.  The bit error rate performance of different laser linewidths with subcarrier number 512 when light is back-to-back

    图 9  不同导频组数目对误码率性能的影响

    Figure 9.  The influence of different pilot groups on bit error rate performance

    图 10  本文方法的验证实验方案图。AWG代表任意波形发生器,I代表同相分量,Q代表正交分量,DSO代表高速数字存储示波器,ECL代表外腔激光器

    Figure 10.  Experimental scheme to validate the method proposed in this paper. Acronym key: AWG, Arbitrary Waveform Generator; I, In-phase; Q, quadrature; DSO, digital storage oscilloscope; ECL, External Cavity Laser.

  • [1] XIANG B Q, LI F. Joint cancellation of phase noise and clipping noise for OFDM[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1806-1814. doi: 10.1109/TVT.2022.3207622
    [2] HU SH CH, KANG K, WANG H F, et al. Low complexity blind detection in OFDM systems with phase noise[J]. Digital Signal Processing, 2022, 129: 103638. doi: 10.1016/j.dsp.2022.103638
    [3] 徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术[J]. 中国光学,2021,14(3):516-527. doi: 10.37188/CO.2020-0051

    XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese). doi: 10.37188/CO.2020-0051
    [4] KESKIN M F, WYMEERSCH H, KOIVUNEN V. Monostatic sensing with OFDM under phase noise: from mitigation to exploitation[J]. IEEE Transactions on Signal Processing, 2023, 71: 1363-1378. doi: 10.1109/TSP.2023.3266976
    [5] DODANE D, SANTACRUZ J P, BOURDERIONNET J, et al. Optical phase-locked loop phase noise in 5G mm-wave OFDM ARoF systems[J]. Optics Communications, 2023, 526: 128872. doi: 10.1016/j.optcom.2022.128872
    [6] XUE ZH J, LI SH Y, LI J D, et al. OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of Lightwave Technology, 2022, 40(13): 4101-4109. doi: 10.1109/JLT.2022.3156573
    [7] 管海军, 刘云清, 张凤晶. 基于数字相位恢复算法的正交相移键控自由空间相干光通信系统[J]. 中国光学,2019,12(5):1131-1138. doi: 10.3788/co.20191205.1131

    GUAN H J, LIU Y Q, ZHANG F J. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. (in Chinese). doi: 10.3788/co.20191205.1131
    [8] SREEDHAR T V S, MEHTA N B. Inter-numerology interference in mixed numerology OFDM systems in time-varying fading channels with phase noise[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5473-5485. doi: 10.1109/TWC.2023.3234363
    [9] KESKIN M F, MARCUS C, ERIKSSON O, et al. On the impact of phase noise on monostatic sensing in OFDM ISAC systems[C]. 2023 IEEE Radar Conference (RadarConf23), IEEE, 2023: 1-6.
    [10] SREEDHAR T V S, MEHTA N B. Refined bounds for inter-carrier interference in OFDM due to time-varying channels and phase noise[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2522-2526. doi: 10.1109/LWC.2022.3207322
    [11] ALAGHBARI K A, LIM H S, AZIZ N H A, et al. Design and validation of the physical layer functions of FBMC/OQAM transceiver with improved residual phase error correction[J]. IEEE Access, 2022, 10: 97381-97393. doi: 10.1109/ACCESS.2022.3205405
    [12] NGUYEN T H, LOUVEAUX J, GORZA S P, et al. Simple feedforward carrier phase estimation for optical FBMC/OQAM systems[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2823-2826. doi: 10.1109/LPT.2016.2623946
    [13] FICKERS J, GHAZISAEIDI A, SALSI M, et al. Multicarrier offset-QAM for Long-Haul coherent optical communications[J]. Journal of Lightwave Technology, 2014, 32(24): 4671-4678. doi: 10.1109/JLT.2014.2361617
    [14] TANG H Y, XIANG M, FU S N, et al. Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission[J]. Optics Express, 2015, 23(5): 6215-6227. doi: 10.1364/OE.23.006215
    [15] LU J N, FU S N, TANG H Y, et al. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission[J]. Optics Communications, 2017, 382: 212-218. doi: 10.1016/j.optcom.2016.07.083
    [16] FANG X, ZHANG F. Phase noise estimation and suppression for PDM CO-OFDM/OQAM systems[J]. Journal of Lightwave Technology, 2017, 35(10): 1837-1846. doi: 10.1109/JLT.2017.2665464
    [17] NGUYEN T T, LE S T, NISSEL R, et al. Pseudo-pilot coding based phase noise estimation for coherent optical FBMC-OQAM transmissions[J]. Journal of Lightwave Technology, 2018, 36(14): 2859-2867. doi: 10.1109/JLT.2018.2823335
    [18] YOU B Y, YANG L, LUO F G, et al. Joint carrier frequency offset and phase noise estimation based on pseudo-pilot in CO-FBMC/OQAM system[J]. IEEE Photonics Journal, 2019, 11(1): 7201611.
    [19] NGUYEN T H, PEUCHERET C. Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems[J]. IEEE Photonics Technology Letters, 2017, 29(12): 1019-1022. doi: 10.1109/LPT.2017.2701907
    [20] WANG X B, YANG L, LUO F G, et al. Adaptive EKF based estimation method for phase noise in CO-OFDM/OQAM system[J]. IEEE Access, 2020, 8: 204931-204940. doi: 10.1109/ACCESS.2020.3037312
  • 加载中
图(10)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  100
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-01-17
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-04-02

目录

    /

    返回文章
    返回