留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双有源区结构4.7 μm中波红外量子级联激光器

王渝沛 章宇航 罗晓玥 钱晨灏 程洋 赵武 魏志祥 韩迪仪 孙方圆 王俊 周大勇

王渝沛, 章宇航, 罗晓玥, 钱晨灏, 程洋, 赵武, 魏志祥, 韩迪仪, 孙方圆, 王俊, 周大勇. 双有源区结构4.7 μm中波红外量子级联激光器[J]. 中国光学(中英文), 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
引用本文: 王渝沛, 章宇航, 罗晓玥, 钱晨灏, 程洋, 赵武, 魏志祥, 韩迪仪, 孙方圆, 王俊, 周大勇. 双有源区结构4.7 μm中波红外量子级联激光器[J]. 中国光学(中英文), 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
WANG Yu-pei, ZHANG Yu-hang, LUO Xiao-yue, QIAN Chen-hao, CHENG Yang, ZHAO Wu, WEI Zhi-xiang, HAN Di-yi, SUN Fang-yuan, WANG Jun, ZHOU Da-yong. 4.7 μm mid-wave infrared quantum cascade laser with double active region structure[J]. Chinese Optics, 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
Citation: WANG Yu-pei, ZHANG Yu-hang, LUO Xiao-yue, QIAN Chen-hao, CHENG Yang, ZHAO Wu, WEI Zhi-xiang, HAN Di-yi, SUN Fang-yuan, WANG Jun, ZHOU Da-yong. 4.7 μm mid-wave infrared quantum cascade laser with double active region structure[J]. Chinese Optics, 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239

双有源区结构4.7 μm中波红外量子级联激光器

基金项目: 国家重点研发计划(No. 2018YFB1107300)
详细信息
    作者简介:

    王 俊(1965—),男,湖北仙桃人,博士,教授,博士生导师,1997 年于加拿大McMaster大学取得博士学位,主要从事半导体激光器方面的研究。E-mail:wjdz@scu.edu.cn

  • 中图分类号: TP394.1;TH691.9

4.7 μm mid-wave infrared quantum cascade laser with double active region structure

Funds: Supported by the National Key Research and Development Program of China (No. 2018YFB1107300)
More Information
  • 摘要:

    本文报道了一种基于双有源区的4.7 μm中波红外量子级联激光器,脊宽为9.5 μm,可实现室温连续基横模工作。通过在单有源区中心插入0.8 μm InP间隔层,将原有的单有源区转变成双有源区结构,可显著降低器件有源区的峰值温度,同时抑制高阶横模的产生。在288 K温度下,腔长为5 mm的双有源区器件的阈值电流密度为1.14 kA/cm2,连续输出功率为0.71 W,快轴发散角为27.3°,慢轴发散角为18.1°。同采用常规单有源区结构器件相比,采用双有源区结构的器件,其最大光输出功率未出现退化,同时器件慢轴方向由多模变化为基横模,光束质量得到了显著改善。本工作为改善高功率中波量子级联激光器的慢轴光束质量提供了一种解决思路。

     

  • 图 1  (a)有限元仿真结构示意图;(b) 在有源区插入不同厚度InP的横向模态的相对品质因子图

    Figure 1.  (a) Schematic diagram of the finite element simulation structure; (b) relative figure of merit for transverse modes when inserting different InP thicknesses in active region

    图 2  (a)单有源区器件及(b)双有源区器件热学仿真结果

    Figure 2.  Thermal simulation results of (a) single active region device and (b) double active region device

    图 3  Sample 1和Sample 2的(a)X射线双晶衍射及其(b)放大图

    Figure 3.  (a) X-ray double diffraction and their (b) enlarged images of Sample 1 and Sample 2

    图 4  (a) Device 1和(c) Device 2的结构示意图;(b) Device 1和(d) Device 2前腔面在电镜下的横截面图

    Figure 4.  Schematic diagram of (a) Device 1 and (c) Device 2; cross-sectional SEM images of the front cavity of (b) Device 1 and (d) Device 2

    图 5  (a) Device 1和Device 2在连续模式下的PIV曲线;(b) Device 1和Device 2在阈值电流下的光谱

    Figure 5.  (a) PIV curves of Device 1 and Device 2 in continuous wave; (b) spectra of Device 1 and Device 2 at threshold current

    图 6  Device 1和Device 2在(a)慢轴方向及(b)快轴方向的远场

    Figure 6.  Far fields of Device 1 and Device 2 in the (a) slow axis direction and (b) fast axis directions

    表  1  不同材料不同掺杂浓度的有效折射率[25]

    Table  1.   Effective refractive indexes of different materials with different doping conditions

    Materials Doping density Refractive index
    InP substrate 2×1017 3.084+2.00000E-4i
    InP 2×1016 3.091+2.00000E-5i
    InGaAs 2×1016 3.393+7.88405E-5i
    Active 2×1017 3.245+4.01336E-5i
    InP 2×1017 3.084+2.00000E-4i
    InP 1×1017 3.088+1.00000E-4i
    InP 5×1018 2.893+5.00000E-3i
    InP 2×1019 2.188+2.70000E-2i
    Au / 3.319+1.84110E+1i
    Si3N4 / 1.358+6.50000E-4i
    Fe:InP / 3.099+6.34895E-8i
    下载: 导出CSV

    表  2  300 K温度下不同材料的热导率[28]

    Table  2.   Thermal conductivities of different materials at 300 K temperature

    Materials Thermal conductivity/W·m−1·K−1
    InP 72.18
    InGaAs 4.64
    Active(longitudinal) 0.76
    Active(lateral) 4.48
    Si3N4 13.9
    AuSn 57
    Cu 398.03
    AlN 257.5
    下载: 导出CSV
  • [1] FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553
    [2] 赵越, 张锦川, 刘传威, 等. 中远红外量子级联激光器研究进展(特邀)[J]. 红外与激光工程,2018,47(10):1003001. doi: 10.3788/IRLA201847.1003001

    ZHAO Y, ZHANG J CH, LIU CH W, et al. Progress in mid-and far-infrared quantum cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001. (in Chinese). doi: 10.3788/IRLA201847.1003001
    [3] DELY H, BONAZZI T, SPITZ O, et al. 10 Gbit s−1 free space data transmission at 9 µm wavelength with unipolar quantum optoelectronics[J]. Laser & Photonics Reviews, 2022, 16(2): 2100414.
    [4] SPITZ O, DIDIER P, DURUPT L, et al. Free-space communication with directly modulated mid-infrared quantum cascade devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(1): 1200109.
    [5] 温志渝, 王玲芳, 陈刚. 基于量子级联激光器的气体检测系统的发展与应用[J]. 光谱学与光谱分析,2010,30(8):2043-2048. doi: 10.3964/j.issn.1000-0593(2010)08-2043-06

    WEN ZH Y, WANG L F, CHEN G. Development and application of quantum cascade laser based gas sensing system[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2043-2048. (in Chinese). doi: 10.3964/j.issn.1000-0593(2010)08-2043-06
    [6] FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876. doi: 10.1364/OE.20.003866
    [7] LI L H, CHEN L, ZHU J X, et al. Terahertz quantum cascade lasers with> 1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311. doi: 10.1049/el.2013.4035
    [8] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. doi: 10.1364/OE.23.005167
    [9] BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408
    [10] LYAKH A, MAULINI R, TSEKOUN A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14): 141113. doi: 10.1063/1.3238263
    [11] BAI Y B. High wall plug efficiency quantum cascade lasers[D]. Xi’an: Northwestern University, 2011.
    [12] BAI Y, BANDYOPADHYAY N, TSAO S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letter, 2010, 97(25): 251104. doi: 10.1063/1.3529449
    [13] WANG F, SLIVKEN S, WU D H, et al. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation[J]. AIP Advances, 2020, 10(5): 055120. doi: 10.1063/5.0003318
    [14] NIU SH, YANG P CH, HUANG R X, et al. High power, broad tuning quantum cascade laser at λ ~8.9 µm[J]. Optics Express, 2023, 31(25): 41252-41258. doi: 10.1364/OE.505349
    [15] WANG C A, HUANG R K, GOYAL A, et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers[J]. Journal of Crystal Growth, 2008, 310(23): 5191-5197. doi: 10.1016/j.jcrysgro.2008.07.100
    [16] ROBERTS J S, GREEN R P, WILSON L R, et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2003, 82(24): 4221-4223. doi: 10.1063/1.1583858
    [17] BOTEZ D, KIRCH J D, BOYLE C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited][J]. Optical Materials Express, 2018, 8(5): 1378-1398. doi: 10.1364/OME.8.001378
    [18] FEI T, ZHAI SH Q, ZHANG J CH, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition[J]. Photonics, 2023, 10(1): 47. doi: 10.3390/photonics10010047
    [19] FEI T, ZHAI SH Q, ZHANG J CH, et al. High power λ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301. doi: 10.1088/1674-4926/42/11/112301
    [20] SUN Y Q, YIN R, ZHANG J CH, et al. High-performance quantum cascade lasers at λ ~9 µm grown by MOCVD[J]. Optics Express, 2022, 30(21): 37272-37280. doi: 10.1364/OE.469573
    [21] 庞磊, 程洋, 赵武, 等. 基于MOCVD生长的4.6 μm中红外量子级联激光器[J]. 红外与激光工程,2022,51(6):20210980. doi: 10.3788/IRLA20210980

    PANG L, CHENG Y, ZHAO W, et al. Mid-infrared quantum cascade laser grown by MOCVD at 4.6 µm[J]. Infrared and Laser Engineering, 2022, 51(6): 20210980. (in Chinese). doi: 10.3788/IRLA20210980
    [22] 孙永强, 费腾, 黎昆, 等. MOCVD生长的瓦级中波红外高功率量子级联激光器[J]. 光学学报,2022,42(22):2214002. doi: 10.3788/AOS202242.2214002

    SUN Y Q, FEI T, LI K, et al. MOCVD-based mid-wave infrared quantum cascade lasers with watt-level power[J]. Acta Optica Sinica, 2022, 42(22): 2214002. (in Chinese). doi: 10.3788/AOS202242.2214002
    [23] SUTTINGER M, GO R, AZIM A, et al. High brightness operation in broad area quantum cascade lasers with reduced number of stages[C]. Proceedings of 2019 Conference on Lasers and Electro-Optics, IEEE, 2019: 1-2.
    [24] BISMUTO A, GRESCH T, BÄCHLE A, et al. Large cavity quantum cascade lasers with InP interstacks[J]. Applied Physics Letters, 2008, 93(23): 231104. doi: 10.1063/1.3042213
    [25] RYU J H, KIRCH J D, KNIPFER B, et al. Beam stability of buried-heterostructure quantum cascade lasers employing HVPE regrowth[J]. Optics Express, 2021, 29(2): 2819-2826. doi: 10.1364/OE.414489
    [26] XIE F, CANEAU C, LEBLANC H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced Ga xIn1- xAs/Al yIn1- y as material on InP substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1445-1452. doi: 10.1109/JSTQE.2011.2136325
    [27] YU N F, DIEHL L, CUBUKCU E, et al. Near-field imaging of quantum cascade laser transverse modes[J]. Optics Express, 2007, 15(20): 13227-13235. doi: 10.1364/OE.15.013227
    [28] LEE H K, YU J S. Thermal effects in quantum cascade lasers at λ ~4.6 μm under pulsed and continuous-wave modes[J]. Applied Physics B, 2012, 106(3): 619-627.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  157
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-01-30
  • 录用日期:  2024-03-13
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回