留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同轴柯勒照明的大变倍比紧凑型显微镜设计

王起 张国芳

王起, 张国芳. 基于同轴柯勒照明的大变倍比紧凑型显微镜设计[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0240
引用本文: 王起, 张国芳. 基于同轴柯勒照明的大变倍比紧凑型显微镜设计[J]. 中国光学(中英文). doi: 10.37188/CO.2023-0240
WANG Qi, ZHANG Guo-fang. Design of large zoom ratio compact microscope based on coaxial Kohler illumination[J]. Chinese Optics. doi: 10.37188/CO.2023-0240
Citation: WANG Qi, ZHANG Guo-fang. Design of large zoom ratio compact microscope based on coaxial Kohler illumination[J]. Chinese Optics. doi: 10.37188/CO.2023-0240

基于同轴柯勒照明的大变倍比紧凑型显微镜设计

doi: 10.37188/CO.2023-0240
基金项目: 滁州职业技术学院提质培优《产品表现技法》课堂革命项目(No. 2022TZPY046);滁州职业技术学院工业设计特色专业教学资源库项目(No. 2022jxzyk04)
详细信息
    作者简介:

    王 起(1979—),女,安徽滁州人,东南大学硕士,滁州职业技术学院讲师,主要研究方向为工业(产品)设计。E-mail:wangqi@chzc.edu.cn

    张国芳(1974—),女,安徽五河人,东南大学博士,安徽财经大学副教授,主要研究方向为工业设计与环境设计

  • 中图分类号: 140.3060;

Design of large zoom ratio compact microscope based on coaxial Kohler illumination

Funds: Supported by Improvement and Optimization of Product Performance Techniques: a Revolutionary Project in the Classroom of Chuzhou Polytechnic (No. 2022TZPY046); Industrial Design Specialty Teaching Resource Library Project of Chuzhou Polytechnic (No. 2022jxzyk04)
More Information
  • 摘要:

    为了实现大靶面、大变倍比显微成像并解决同轴柯勒照明高集成度设计的问题,本文提出了一种基于同轴柯勒照明的大变倍比紧凑型显微镜光学系统的设计方法。首先,对望远镜和显微镜连续变倍光学系统的成像原理进行了分析,并对正组补偿式变倍显微镜光学系统的设计原理进行了理论分析。然后,我们提出把前固定组分解为准直组和汇聚组并在两镜组间设计分光镜,并通过共用透镜组实现同轴柯勒照明系统的紧凑型设计。最后,对大靶面连续变倍显微镜系统和与之匹配的同轴柯勒照明光学系统进行了设计,设计结果表明显微成像光学系统的变倍比为10×,工作距离为60 mm,物方最高分辨率为1.75 µm,同轴照明均匀性为94.3%。该系统具有成像质量好、畸变小、变倍曲线平滑、体积小巧等特点,从而验证了该设计方法的可行性。

     

  • 图 1  正组补偿变倍成像原理图

    Figure 1.  Imaging principle diagram of the positive group compensation zoom optical system

    图 3  变倍显微镜的理想模型结构

    Figure 3.  Ideal model diagram of the zoom microscope

    图 2  变倍显微镜成像原理图

    Figure 2.  Imaging principle diagram of the zoom microscope

    图 4  变倍显微镜二维结构图

    Figure 4.  2D structural diagram of the zoom microscope

    图 5  变倍显微镜结构参数图

    Figure 5.  Structural parameter diagram of the zoom microscope

    图 6  变倍显微镜MTF曲线图

    Figure 6.  MTF curves of the zoom microscope

    图 7  变倍显微镜点列图

    Figure 7.  Spot diagram of the zoom microscope

    图 8  变倍显微镜畸变曲线图

    Figure 8.  Distortion curves of the zoom microscope

    图 9  同轴柯勒照明光学系统

    Figure 9.  Optical system of the coaxial Kohler illumination

    图 10  柯勒照明光学系统结构参数图

    Figure 10.  Structural parameter diagram of the Kohler illumination optical system

    图 11  照明强度分布图

    Figure 11.  Lighting intensity distribution

    图 12  变倍显微镜总体光路图(β=−0.6)

    Figure 12.  Overall optical path diagram of the zoom microscope

    图 13  蒙特卡洛分析概率图

    Figure 13.  Monte Carlo probability diagram

    图 14  变倍运动曲线图

    Figure 14.  Zoom curve diagram

    表  1  变倍显微镜光学系统设计指标

    Table  1.   Zoom microscope optical system design index

    参 数 数 值
    变倍比 10×
    放大率 −0.6~−6.0
    工作距/mm 60
    工作波段/nm 480~660
    相机分辨率/pixel 2448×2048
    像素尺寸/µm 3.45×3.45
    照明方式 同轴柯勒照明
    下载: 导出CSV

    表  2  四组元的初始焦距

    Table  2.   Focal lengths of the four groups in the initial structure

    组元 前固定组 变焦组 补偿组 后固定组
    焦距/mm 40.7 −29.3 54.4 1001.9
    下载: 导出CSV

    表  3  四组元之间的间距

    Table  3.   Spacing between the four groups

    组元距离 −l1/mm d12/mm d23/mm d34/mm l4ʹ/mm
    β=−0.6 60.0 36.02 98.06 36.75 49.17
    β=−1.5 60.0 51.88 53.13 65.82 49.17
    β=−6.0 60.0 82.53 3.20 85.10 49.17
    下载: 导出CSV

    表  4  变倍显微镜物方分辨率

    Table  4.   Object-side resolution of the zoom microscope

    放大倍率物方NA物方分辨率
    β=−0.60.0389.0 µm
    β=−1.50.0734.6 µm
    β=−6.00.1921.75 µm
    下载: 导出CSV

    表  5  变倍显微镜公差分配表

    Table  5.   Tolerance distribution of the zoom microscope

    公差项数值
    光圈/fringe≤3
    元件厚度/mm±0.02
    表面偏心/mm±0.01
    元件倾斜/(°)±0.01
    元件偏心/mm±0.01
    表面不规则度/fringe≤0.3
    折射率±0.001
    阿贝数/%±0.5
    下载: 导出CSV
  • [1] ZHANG K, LI J CH, ZHANG X, et al. Design method of dual-band synchronous zoom optical system based on co-path zoom groups[J]. Optics and Lasers in Engineering, 2023, 170: 107791. doi: 10.1016/j.optlaseng.2023.107791
    [2] FAN Z CH, WEI S L, ZHU ZH B, et al. Automatically retrieving an initial design of a double-sided telecentric zoom lens based on a particle swarm optimization[J]. Applied Optics, 2019, 58(27): 7379-7386. doi: 10.1364/AO.58.007379
    [3] 张健, 罗天娇, 罗春华, 等. 30mm~300mm轻型变焦物镜光学系统设计[J]. 应用光学, 2019, 40(1): 51-57.

    ZHANG J, LUO T J, LUO CH H, et al. Optical system design of 30 mm~300 mm light weight zoom objective[J]. Journal of Applied Optics, 2019, 40(1): 51-57. (in Chinese).
    [4] ZHANG K, LI J CH, SUN S, et al. Design method of dual-band synchronous zoom microscope optical system based on coaxial Kohler illumination[J]. Optics Express, 2023, 31(25): 41234-41251. doi: 10.1364/OE.505224
    [5] 贺磊, 张建隆, 杨振. 6.5倍微小型可见光变焦光学系统设计[J]. 光学仪器,2019,41(2):46-52.

    HE L, ZHANG J L, YANG ZH. Design of a 6.5 times microscale continuous visible zoom optical system[J]. Optical Instruments, 2019, 41(2): 46-52. (in Chinese).
    [6] MIKŠ A, NOVÁK J. Paraxial imaging properties of double conjugate zoom lens system composed of three tunable-focus lenses[J]. Optics and Lasers in Engineering, 2014, 53: 86-89. doi: 10.1016/j.optlaseng.2013.08.018
    [7] MIKŠ A, NOVÁK P. Paraxial design of four-component zoom lens with fixed position of optical center composed of members with variable focal length[J]. Optics Express, 2018, 26(20): 25611-25616. doi: 10.1364/OE.26.025611
    [8] LIANG D, WANG X Y. Zoom optical system using tunable polymer lens[J]. Optics Communications, 2016, 371: 189-195. doi: 10.1016/j.optcom.2016.03.074
    [9] 马海宽, 曹煊, 褚东志, 等. 应用于海洋监测的水下变焦镜头设计[J]. 激光与光电子学进展,2017,54(10):68-73.

    MA H K, CAO X, CHU D ZH, et al. Design of underwater zoom lens for marine monitoring[J]. Laser & Optoelectronics Progress, 2017, 54(10): 68-73. (in Chinese).
    [10] 张欣婷, 亢磊, 吴倩倩. 超高倍变焦光学系统设计[J]. 应用光学,2018,39(4):466-469.

    ZHANG X T, KANG L, WU Q Q. Design of ultra-high zoom optical system[J]. Journal of Applied Optics, 2018, 39(4): 466-469. (in Chinese).
    [11] FAN CH X, YANG B, LIU Y P, et al. Zoom lens with high zoom ratio design based on Gaussian bracket and particle swarm optimization[J]. Applied Optics, 2021, 60(11): 3217-3223. doi: 10.1364/AO.418970
    [12] MIKŠ A, NOVÁK P. Double-sided telecentric zoom lens consisting of four tunable lenses with fixed distance between object and image plane[J]. Applied Optics, 2017, 56(25): 7020-7023. doi: 10.1364/AO.56.007020
    [13] 闫晶, 刘英, 孙权, 等. 10倍中波红外连续变焦光学系统设计[J]. 激光与光电子学进展,2014,51(1):012201.

    YAN J, LIU Y, SUN Q, et al. Design of 10× MWIR continuous zoom optical system[J]. Laser & Optoelectronics Progress, 2014, 51(1): 012201. (in Chinese).
    [14] LIU Y P, YANG B, GU P X, et al. 50X five-group inner-focus zoom lens design with focus tunable lens using Gaussian brackets and lens modules[J]. Optics Express, 2020, 28(20): 29098-29111. doi: 10.1364/OE.404098
    [15] 刘圆, 叶德茂, 王建楹, 等. 50 mm~1000 mm大变倍比变焦光学系统设计[J]. 应用光学,2020,41(6):1147-1152. doi: 10.5768/JAO202041.0601002

    LIU Y, YE D M, WANG J Y, et al. Design of 50 mm~1000 mm zoom optical system with high zoom ratio[J]. Journal of Applied Optics, 2020, 41(6): 1147-1152. (in Chinese). doi: 10.5768/JAO202041.0601002
    [16] LEE S, CHOI M, LEE E, et al. Zoom lens design using liquid lens for laparoscope[J]. Optics Express, 2013, 21(2): 1751-1761. doi: 10.1364/OE.21.001751
    [17] JO S H, PARK S C. Design and analysis of an 8x four-group zoom system using focus tunable lenses[J]. Optics Express, 2018, 26(10): 13370-13382. doi: 10.1364/OE.26.013370
    [18] LI J CH, ZHANG K, DU J L, et al. Double-sided telecentric zoom optical system using adaptive liquid lenses[J]. Optics Express, 2023, 31(2): 2508-2522. doi: 10.1364/OE.479809
    [19] ZHANG K, QU ZH, ZHONG X, et al. 40× zoom optical system design based on stable imaging principle of four groups[J]. Applied Optics, 2022, 61(6): 1516-1522. doi: 10.1364/AO.451726
    [20] ZHANG K, ZHONG X, QU ZH, et al. Design method research of a radiation-resistant zoom lens[J]. Optics Communications, 2022, 509: 127881. doi: 10.1016/j.optcom.2021.127881
    [21] 张坤, 曲正, 钟兴, 等. 30倍轻小型变焦光学系统设计[J]. 光学 精密工程,2022,30(11):1263-1271. doi: 10.37188/OPE.20223011.1263

    ZHANG K, QU ZH, ZHONG X, et al. Design of 30× zoom optical system with light weight and compact size[J]. Optics and Precision Engineering, 2022, 30(11): 1263-1271. (in Chinese). doi: 10.37188/OPE.20223011.1263
    [22] 陈鲁, 李志强. 面板检测用显微镜光学系统设计[J]. 光学仪器,2021,43(1):42-48.

    CHEN L, LI ZH Q. Design of microscope optical system for panel inspection[J]. Optical Instruments, 2021, 43(1): 42-48. (in Chinese).
    [23] 王谭, 袁屹杰, 吴英春, 等. 连续变焦镜头凸轮曲线压力升角优化研究[J]. 电光与控制,2021,28(1):61-65.

    WANG T, YUAN Y J, WU Y CH, et al. Pressure angle optimization for cam curve of continuous zoom lens[J]. Electronics Optics & Control, 2021, 28(1): 61-65. (in Chinese).
    [24] LI J CH, ZHANG K, DU J L, et al. Design and theoretical analysis of the image-side telecentric zoom system using focus tunable lenses based on Gaussian brackets and lens modules[J]. Optics and Lasers in Engineering, 2023, 164: 107494. doi: 10.1016/j.optlaseng.2023.107494
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-30
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!